
Global Routing SDK

User Guide

Version 3.0

1 - What is Global Routing

SDK?

2 - Getting Started

System Requirements...5

Installing Data...6

Installing the API...6

Configuring Routing Properties and Data

Resources..7

3 - Using Java API

GetTravelBoundary..14

GetRoute...20

GetRouteCostMatrix..27

Persistent Updates..35

Transient Updates...40

GetSegmentData..45

4 - Using REST API

GetTravelBoundary..49

GetRoute...59

GetRouteCostMatrix..69

GetRouteCostMatrix HTTP POST Options.........77

Response for Multiple Error in a Single Request.84

GetSegmentData..85

PersistentUpdates...90

Transient Updates...104

GetCapabilities..111

DescribeDatasets..118

DescribeDatabases...120

5 - Closest Arc Snapping

What is a Restricted Arc....................................124

Impact on Boundary Calculations.....................125

Impact on Route and Matrix Calculations126

6 - Local Roads Load Factor

Why is it Needed?...129

Impact on Routes and Matrices........................130

Impact on Performance131

7 - Sample Applications

8 - Appendix

Java API Road Type Enumeration.....................134

REST API Road Type Enumeration...................135

Java API Language Enumeration......................136

REST API Language Enumeration....................137

Table of Contents

1 - What is Global
Routing SDK?
The Global Routing SDK (GR SDK) is a routing toolkit that allows access
to core routing capabilities through an in-process and REST API.This allows
certain core functions to be integrated into any solution and enables you to
develop and deploy routing desktop, mobile, or web applications. These
applications can provide the ability to obtain driving or walking directions,
calculate drive time and drive distance, and identify locations within a certain
time or distance from a starting point.

GR SDK includes the following:

• The API, a core set of jar files
• Samples to use as reference
• WAR file for REST API
• JavaDoc providing descriptions of the Java API
• User guide, describing core features and examples (Java, REST, and

SOAP API).To access the HTML-based user guide, open index.html page
in your web browser located in the dev\docs\User Guide\ folder.

In this section

2 - Getting Started
This chapter lists all the prerequisites to get the GR SDK up and running.

In this section

System Requirements..5
Installing Data..6
Installing the API..6
Configuring Routing Properties and Data Resources................................7

System Requirements

To install GR SDK, your computer must meet the following system requirements.

Operating Systems

Windows

• Windows Server 2008 R2
• Windows Server 2012 R1
• Windows Server 2012 R2

Linux/Unix

• CentOS 5
• CentOS 6
• CentOS 7
• Oracle Linux 6
• Oracle Linux 7
• Red Hat Enterprise Linux 5
• Red Hat Enterprise Linux 6
• Red Hat Enterprise Linux 7
• SUSE 10
• SUSE 11
• Ubuntu 12.04 LTS
• Ubuntu 14.04 LTS
• Ubuntu 16.04 LTS

Web Server

Apache Tomcat version 7 and above

Disk Space

300MB of disk space for a complete installation (without data)

Java

JDK7 or higher

Note: You need to install Java 7 or above and set the environment variable JAVA_HOME.

5Global Routing SDK 3.0 User Guide

Getting Started

Installing Data

GR SDK does not include routing data (only sample data is included with the sample applications).
Applications built using GR SDK can use any routing data from Precisely. All data can be purchased
separately.

Follow the install instructions that are included with your routing data to install the data on your
system.

See the section Configuring Routing Properties and Data Resources on page 7 for instructions
on how to configure your data with the GR SDK.

Installing the API

The GR SDK is provided as a zip file (gra-version.zip) for Windows and as a TAR file (gra-version.tar)
for non-Windows.

Once installed, you will have the following folder structure:

• lib: Contains the required jars and dependencies
• javadoc: Contains Javadoc files
• docs: Contains user documentation
• legal: Contains clauses for 3rd party library distribution.
• service: Contains REST WAR file
• samples: Contains sample applications illustrating use cases for the GR SDK, Global Geocoding

API (GGA), and Spectrum Spatial SDK (LI-SDK).

Java API

To install the Java API:

1. Choose the relevant file for your system, extract it to any location on the file system.
2. Add the lib directory to the classpath.

REST API

To install the REST API:

1. Choose the relevant file for your system, extract it to any location on the file system.
2. Locate the GRA WAR file in the install_dir\service directory.

6Global Routing SDK 3.0 User Guide

Getting Started

3. Deploy the WAR file in Apache Tomcat webapps directory: install_dir\webapps.
4. Configure the database. For Database configuration refer to Configuring Routing Properties

and Data Resources on page 7.
5. Restart the Tomcat server.

Configuring Routing Properties and Data
Resources

There are two configuration files involved in GRA:

• routing.properties - The routing properties file contains configuration parameters for the GR
SDK instance.

• dbList.json - The data resource file contains the datasets and database configurations used
by the GR SDK.

Note: For the Java API, the two configuration files can have any filename as long as they
are referenced appropriately. For the instructions in this document, we are going to refer to
these configuration files as routing.properties, and dbList.json.

Note: For the REST API, only the dbList.json configuration file can have any filename as long
as it is referenced appropriately.

Routing Properties File

The routing properties file controls the routing instance default values and configuration. There are
example routing.properties files (Java and REST) included with the GR SDK installation.
These can be found in the following locations:

• Java - install_dir\samples\resources
• REST - after deploying the WAR file,
tomcat_install_dir>\webapps\webApp-context\WEB-INF\classes

These files can be located anywhere on the file system. When creating routing applications, these
property files a defined in the GRAInstanceImpl class to pass the routing parameters. For more
information see, Using Java API on page 12.

The routing.properties file has the following parameters:

7Global Routing SDK 3.0 User Guide

Getting Started

ExampleRequiredDescriptionParameter Name

EPSG:4326NoSpecifies the default coordinate system.routeDefaultCoordSys

750000NoSpecifies the amount of processing time
(in milliseconds) before stopping a point
to point routing request if processing is
not complete. Default is 500000.

routeTimeout

600000NoSpecifies the amount of processing time
(in milliseconds) before stopping a
multipoint (point to point with intermediate
points) routing request if processing is not
complete. Default is 500000.

multiPointTimeout

750000NoSpecifies the amount of processing time
(in milliseconds) before stopping a matrix
routing request if processing is not
complete. Default is 500000.

matrixRouteTimeout

FalseNoSpecifies whether to use major roads
when other roads are unavailable. This is
a Boolean parameter; if set as true, the
engine uses major roads when other
roads cannot be used.

allowFallback

16NoSpecifies the number of threads to be
used for point to point route requests and
routing data requests.

shortProcessThreads

16NoSpecifies the number of threads to be
used for isochrone, matrix route, and
multi-point route requests.

longProcessThreads

FalseNoSpecifies if the configuration changes are
dynamically loaded. This is a Boolean
type and if set to true, any changes in the
properties and JSON configuration files
will be loaded without restarting the
application. Default is false.

dynamicLoading

E:\\GRA\\resources\\dbList.jsonYesSpecifies the file object with the path of
the data resource file (dbList.json). This
can be the absolute path to the directory
on the file system or the relative path from
the properties file to the data resource file.

dbConfigJSONFile

8Global Routing SDK 3.0 User Guide

Getting Started

Note: All properties names in data routing.properties file are case sensitive.

Data Resource File

The data resource file contains all of the data resources that are accessible to the GR SDK, and
defines the names of the databases used in the API.The file can be configured with multiple datasets
and you can combine these datasets into the databases used by the API. There are example
dbList.json files (Java and REST) included with the GR SDK installation. These can be found in
the following locations:

• Java - See install_dir\samples\resources
• REST - After deploying the WAR file, see
tomcat_install_dir>\webapps\webApp-context\WEB-INF\classes

Note: To execute the REST API sample, refer to the readme.txt file in the
Install_dir\samples directory. The dbList.json file inside the extracted WAR file
must have a database with name DC configured with the path of the data in the
install_dir\resources\datasets directory.

There are three main sections to the file.

ValuesDescriptionParameter Name

Define the name of the database to be used as
the default.This must be one of the name values
defined in the databases parameter.

Specifies the name of the default database to
be used.The database must be a valid database
name defined in this file. For the Java API, this

database is used if the DBResource method
is not set in the API. For the REST API, this
database is used if the dbsource.json is set to
default.json. Although this parameter is optional,
it is recommended to define the default database
in case one is not specified in the code.

defaultDatabase

9Global Routing SDK 3.0 User Guide

Getting Started

ValuesDescriptionParameter Name

Define the id element which is the unique
identifier for the dataset. This is the value used
to define the datasets element in the databases

parameter. Define the paths element which is
the location of the data on your file system. The
path can be the absolute path to the directory
on the file system or the relative path from the
data resource file to the data.

Path can also be a folder containing multiple
routing datasets. In this case, each sub folder
will be scanned for routing data and the routing
data loaded for processing.

Note: When specifying a folder, it
should only contain routing data.
During data loading, the Spatial server
looks for the metadata.json file to
locate the routing data. This file is also
present for GeoCoding data. To avoid
confusion (a failure during data loading)
we recommend keeping only routing
data under a folder.

Specifies the list of datasets to be made
accessible to the GR SDK as databases.

datasets

Define the name element which is the unique
identifier for the database.This is also the name
used to define the default database, or set the
database being used in the API. Define the

datasets element, which is the list of datasets
that will make up the database.You can define
one or more comma separated id(s) of the
datasets.

Specifies the list of databases used by the API.
You can combine datasets into a single
database.

databases

Note: If the DBResource method is not set in the API, the defaultDatabase parameter in the
data resource file is used for calculations.

Note: All properties in data resource file are case sensitive.

Example data resource file, with one database (US) consisting of two datasets:

{
 "defaultDatabase": "US",
 "datasets": [{
 "id": "US NE dataset",
 "paths":
["E:\\db\\ERM_Quarterly_MAR2015\\ERM-US\\2014.09\\driving\\northeast"]

10Global Routing SDK 3.0 User Guide

Getting Started

 }, {
 "id": "US Central dataset",
 "paths":
["E:\\db\\ERM_Quarterly_MAR2015\\ERM-US\\2014.09\\driving\\central"]
 }
],
 "databases": [{
 "name": "US",
 "datasets": ["US NE dataset", "US Central dataset"]
 }
]
}

11Global Routing SDK 3.0 User Guide

Getting Started

3 - Using Java API
The main entry point for the Global Routing API is described by the
IGRAInstance, which is implemented by the GRAInstanceImpl class.

GRAInstanceImpl class can be instantiated by providing an object of
either of the following two classes:

1. File: The File object created with the path to the routing.properties
file.

2. Options: The Options class where you can specify all of the same
parameters as the File object, however define them inline.

The Options class has the following mandatory parameter:

DescriptionTypeField Name

File object with the path of the database
configuration JSON file

FiledbConfigJSON

The Options class has the ability to specify the same optional parameters
as defined in the routing.properties file. Descriptions for these
properties can be found in Configuring Routing Properties and Data
Resources on page 7.

You can instantiate the GRAInstanceImpl using one of the following ways:

IGRAInstance gra =
IGRAInstanceFactory.getInstance(PROPERTY_FILE_OBJECT);

Where PROPERTY_FILE_OBJECT is the File object containing all the
necessary configuration and location of dbList.json file containing
database resources information.

or

IGRAInstance gra =
IGRAInstanceFactory.getInstance(dbConfigJSON, options);

Where dbConfigJSON is the JSON file containing database resources information and options is the
instance of Options class containing values for optional parameters.

IGRAInstance gra = IGRAInstanceFactory.getInstance(resourcesConfiguration,
options);

Where resourcesConfiguration is the instance of DBResourcesConfiguration class containing
database resources information and options is the instance of Options class containing values for optional
parameters.

Note: The IGRAInstance is a heavy weight object and you should not create more than one
instance in a single application. It is important to call the destroy method for the IGRAInstance
once it is no longer required.

Once you get an instance of IGRAInstance, the routing capabilities methods can then be called.

In this section

GetTravelBoundary..14
GetRoute...20
GetRouteCostMatrix..27
Persistent Updates..35
Transient Updates...40
GetSegmentData...45

13Global Routing SDK 3.0 User Guide

Using Java API

GetTravelBoundary

Description

GetTravelBoundary determines a drive or walk time or distance boundary from a location. This
feature obtains polygons corresponding to an isochrone or isodistance calculation. An isochrone is
a polygon or set of points representing an area that can be traversed in a network from a starting
point in a given amount of time. An isodistance is a polygon or set of points representing the area
that is a certain distance from the starting point. The GetTravelBoundary operation (also known
as an iso definition) takes a starting point, a unit (linear or time), one or more costs as input and
returns the resulting travel boundary. Costs refer to the amount of time or distance to be used in
calculating an iso. Multiple costs can also be given as input. In case of multiple costs, costs can also
be provided as a comma delimited string.

Required Parameters

The getTravelBoundary method under the IGRAInstance interface accepts an object of
GetTravelBoundaryRequest class.The GetTravelBoundaryRequest constructor must have
the following as parameters:

DescriptionTypeParameter

Specifies the start location from where the travel boundary
has to be calculated.

IPointpoint

Specifies the cost distance or time, in the cost units specified
(can be a decimal value). For example, if the unit specified
is miles and you specify 10 in this parameter, the travel
boundary will be calculated for how far you can travel in 10
miles.You can also specify multiple costs by specifying the
values as a comma delimited string. It will return a separate
travel boundary for every cost specified. If you specify
multiple costs, every response will have cost and cost units
associated with that response.

Double[]costs

14Global Routing SDK 3.0 User Guide

Using Java API

DescriptionTypeParameter

Specifies the type of metric used to calculate the travel
boundary. Available distance values are:

• LinearUnit.METER
• LinearUnit.KILOMETER
• LinearUnit.YARD
• LinearUnit.FOOT/LinearUnit.FT
• LinearUnit.MILE

Available time values are:

• TimeUnit.MINUTE
• TimeUnit.MILLISECOND
• TimeUnit.SECOND
• TimeUnit.HOUR.

LinearUnit/TimeUnitcostUnit

Optional Parameters

Optional parameters can be get or set in GetTravelBoundaryRequest object:

DescriptionTypeParameter

Specifies the name of the database resource used to run
the request.

StringdbResource

Specifies the maximum distance to allow travel off the road
network using the maxOffroadDistanceUnit. Examples
of off-network roads include driveways and access roads.
For example, if you specify a maximum off-road distance of
1 mile, the travel boundary will extend no further than one
mile from the network road. If you specify a value of 0, the
travel boundary will not extend beyond the road itself. Use
the ambient speed options to specify the speed of travel
along non-network roads.

DoublemaxOffroadDistance

15Global Routing SDK 3.0 User Guide

Using Java API

DescriptionTypeParameter

Specifies the distance unit defining the
maxOffroadDistance.You must also define
maxOffroadDistance if you define this parameter.
Available distance values are:

• LinearUnit.METER
• LinearUnit.KILOMETER
• LinearUnit.YARD
• LinearUnit.FOOT/LinearUnit.FT
• LinearUnit.MILE.

LinearUnitmaxOffroadDistanceUnit

Specifies the coordinate system to return the travel boundary
geometries.The default is the coordinate system of the data
used (for example, epsg:4326).

CoordSysdestinationSrs

Specifies whether to include all roads in the calculation or
just major roads. If you choose to include only major roads,
performance will improve but accuracy may decrease. The
default is true.

BooleanmajorRoads

Specifies whether you want to return holes, which are areas
within the larger boundary that cannot be reached within the
desired time or distance, based on the road network. The
default is false.

BooleanreturnHoles

Specifies whether you want to return islands, which are small
areas outside the main boundary that can be reached within
the desired time or distance. The default is false.

BooleanreturnIslands

Specifies the percentage of the original points that should
be returned or upon which the resulting complexity of
geometries should be based. A number between 0.0 and
1.0 is accepted, exclusive of 0.0 but inclusive of 1.0.
Complexity increases as the value increases, therefore 1.0
means the most complex. The default is 0.5.

DoublesimplificationFactor

16Global Routing SDK 3.0 User Guide

Using Java API

DescriptionTypeParameter

Specifies the style of banding to be used in the result.
Banding styles are the types of multiple distance bands that
can be displayed based on multiple costs. Banding styles
can be returned in the following formats:

• BandingStyle.DONUT: Each boundary is determined by
subtracting out the next smallest boundary. This is the
default method.

• BandingStyle.ENCOMPASSING: Each boundary is
determined independent of all others.

BandingStylebandingStyle

Specifies whether the routing calculation uses the historic
traffic speeds. These speeds are based on different
time-of-day buckets. The data must have historic traffic
speeds included in order to use this feature. The data for
each country/region has the same bucket definitions, where
the speeds for these bucket values may vary. The options
are:

• HistoricSpeedBucket.NONE: This is the default value.
It does not include Historic traffic data in calculation,
instead an averaged speed value is used.

• HistoricSpeedBucket.AMPEAK: Calculate routes with
the peak AM speeds. The AMPeak time bucket is from
07:00 to 10:00 hrs. time of day.

• HistoricSpeedBucket.PMPEAK: Calculate routes with
the peak PM speeds. The PMPeak time bucket is from
16:00 to 19:00 hrs. time of day.

• HistoricSpeedBucket.OFFPEAK: Calculate routes with
the off peak (daytime) speeds. The OffPeak time bucket
is from 10:00 to 16:00 hrs. time of day.

• HistoricSpeedBucket.NIGHT: Calculate routes with the
nighttime speeds. The Night time bucket is from 22:00 to
04:00 hrs. time of day.

HistoricSpeedBuckethistoricSpeedBucket

17Global Routing SDK 3.0 User Guide

Using Java API

DescriptionTypeParameter

Specifies the speed to travel when going off in a network
road to find the travel boundary (for all road types).To control
how off-network travel is used in the travel boundary
calculation, you need to specify the speed of travel off the
road network (the ambient speed). Ambient speed can affect
the size and shape of the travel boundary polygon. In
general, the faster the ambient speed, the larger the polygon.
For example, if you were at a point with 5 minutes left, and
if the ambient speed was 15 miles per hour, boundary points
would be put at a distance of 1.25 miles. If the ambient speed
was reduced to 10 miles per hour, boundary points would
be put at a distance of 0.83 miles.

DoubledefaultAmbientSpeed

Specifies the unit of measure to calculate the ambient speed.
Available speed units are:

• VelocityUnit.MPH (miles per hour)
• VelocityUnit.KPH (kilometers per hour)
• VelocityUnit.MTPS (meters per second)
• VelocityUnit.MTPM (meters per minute)

VelocityUnitambientSpeedUnit

Specifies the ambient speed for off-network travel based on
the road type.You must specify both the road type and the
new speed for that road type. The speed is defined in the
defined ambientSpeedUnit. Road types can be returned in
all supported types. For a list of road type enumerations,
see Java API Road Type Enumeration on page 134.

Map[RoadType,
Double]

ambientSpeeds

Specifies the percentage of the cost used to calculate the
distance between the starting point and the isodistance.
Propagation factor serves the same purpose for isodistances
as ambient speed does for isochrones, that is, it controls
how off-network travel is used in the travel boundary
calculation. Propagation factor can affect the size and shape
of the travel boundary polygon. In general, more the
propagation factor value, the larger the polygon.

This is similar to ambient speed, except that it applies to
isodistances. The default value for this property is 0.16. If
this property is not specified, then the calculation uses the
value from the server setting. Valid values are between 0.0
and 1.0, both inclusive.

DoublepropagationFactor

18Global Routing SDK 3.0 User Guide

Using Java API

DescriptionTypeParameter

Specifies the propagation factor to be used for an off-network
travel based on the road type.You must specify both the
road type and the propagation factor for that road type.

This will override the default propagation factor value for the

particular roadType. This option is applicable for
isodistance only.

Map[RoadType,Double]propagationFactorOverride

Specifies a comma-separated list of road types to be avoided
during travel boundary calculation.This is a String parameter.
When a road type is provided as the value of the parameter,
the boundary excludes that type of roads in the calculation.

For example, if tollRoad is provided as the parameter
value, the calculated boundary will have no toll roads.

Stringavoid

Code Example

Travel boundary with multiple costs

IGRAInstance gra = IGRAInstanceFactory.getInstance(PROPERTY_FILE_OBJECT);
IPoint point = new
Point(SpatialInfo.create(CoordSysConstants.longLatWGS84), new
DirectPosition(-73, 40));
GetTravelBoundaryRequest.Builder boundaryRequestBuilder = new
GetTravelBoundaryRequest.Builder(point, new double[]{5,10} ,
TimeUnit.MINUTE);
GetTravelBoundaryRequest boundaryRequest = boundaryRequestBuilder .
DBResource("US") .build();
GetTravelBoundaryResponse boundaryResponse =
gra.getTravelBoundary(boundaryRequest);

Note: DBResource("US") is the name of the database resource to use in the request. This
parameter is not required if defaultDatabase is configured in JSON configuration file.

19Global Routing SDK 3.0 User Guide

Using Java API

GetRoute

Description

GetRoute returns routing information for a set of two distinct points or multiple points. It takes a
starting location and an ending location with optional intermediate points as input, and returns the
route that is either the fastest or the shortest.

Required Parameters

The getRoute method under IGRAInstance interface, accepts an object of GetRouteRequest
class. The GetRouteRequest constructor must have the following as parameters:

DescriptionTypeParameter

Specifies the start location of the route.IPointstartPoint

Specifies the end location of the route.IPointendPoint

Optional Parameters

Following optional parameters can be get or set in GetRouteRequest object:

DescriptionTypeParameter

Specifies the name of the database resource used to run
the request.

StringdbResource

Specifies the list of intermediate points to include along the
route.

List[IPoint]intermediatePoints

Specifies a processing parameter that indicates if the
intermediate points should be optimized.The default is false.
By default the intermediate points will be used in the
calculation in the order specified. If set to true, the specified
points will be re-ordered in an optimal manner during route
computation.

BooleanoptimizeIntermediatePoints

20Global Routing SDK 3.0 User Guide

Using Java API

DescriptionTypeParameter

Specifies the coordinate system to return the route and
resulting geometries. The default is the coordinate system
of the data used.

CoordSysdestinationSrs

Specifies the type of optimizing to use for the route. Valid
values are OptimizeBy.TIME or
OptimizeBy.DISTANCE.The default is OptimizeBy.TIME
.

OptimizeByoptimizeBy

Specifies the units to return distance. The default is
LinearUnit.METER. Available values are:

• LinearUnit.METER
• LinearUnit.KILOMETER
• LinearUnit.YARD
• LinearUnit.FOOT/LinearUnit.FT
• LinearUnit.MILE

LinearUnitdistanceUnit

Specifies the route directions including the time it takes to
follow a direction. The default is true.

BooleanreturnTime

Specifies the units to return the time. The default is
TimeUnit.MINUTE. Available values are:

• TimeUnit.MINUTE
• TimeUnit.MILLISECOND
• TimeUnit.SECOND
• TimeUnit.HOUR.

TimeUnittimeUnit

Specifies the language the travel directions should be
returned. The default is Language.ENGLISH.

Directions can be returned in all supported languages. For
a list of language enumerations, see Java API Language
Enumeration on page 136.

Languagelanguage

Specifies whether to include all roads in the calculation or
just major roads. If you choose to include only major roads,
performance will improve but accuracy may decrease. The
default is false.

BooleanmajorRoads

Specifies whether to return turn-by-turn directions in route
response. The default is false.

BooleanreturnDirections

21Global Routing SDK 3.0 User Guide

Using Java API

DescriptionTypeParameter

Specifies whether to return the route geometry in route
response. The default is false.

BooleanreturnSegmentGeometry

Specifies whether to return a separate geometry associated
with the route instruction in route response. The default is
false.

BooleanreturnDirectionGeometry

Specifies the priority to give to different types of roads when
determining the route. The road type is the format as
described in the ambientSpeeds option in
GetTravelBoundary.road type priority can be of the
following format:

• RoadTypePriority.HIGH: Prefer the road type over other
road types.

• RoadTypePriority.MEDIUM: Give this road type equal
preference with other road types. If no preference is
specified for a road type, the default is Medium.

• RoadTypePriority.LOW: Prefer other road types over
this road type.

• RoadTypePriority.AVOID: Exclude the road type from
routes if possible. It is not always possible to exclude a
road type from the travel directions. Depending on the
situation, the alternative to an avoided road type may be
so poor that the software will choose a route that uses an
avoided road type. Also, if the starting or ending point lies
along a segment whose road type has been avoided, the
software will still use that segment.

Map[RoadType,
RoadTypePriority]

roadTypePreferences

22Global Routing SDK 3.0 User Guide

Using Java API

DescriptionTypeParameter

Specifies whether the routing calculation uses the historic
traffic speeds. These speeds are based on different
time-of-day buckets. The data must have historic traffic
speeds included in order to use this feature. The data for
each country/region has the same bucket definitions, where
the speeds for these bucket values may vary. The options
are:

• HistoricSpeedBucket.NONE: This is the default value.
It does not include Historic traffic data in calculation,
instead an averaged speed value is used.

• HistoricSpeedBucket.AMPEAK: Calculate routes with
the peak AM speeds. The AMPeak time bucket is from
07:00 to 10:00 hrs. time of day.

• HistoricSpeedBucket.PMPEAK: Calculate routes with
the peak PM speeds. The PMPeak time bucket is from
16:00 to 19:00 hrs. time of day.

• HistoricSpeedBucket.OFFPEAK: Calculate routes with
the off peak (daytime) speeds. The OffPeak time bucket
is from 10:00 to 16:00 hrs. time of day.

• HistoricSpeedBucket.NIGHT: Calculate routes with the
nighttime speeds. The Night time bucket is from 22:00 to
04:00 hrs. time of day.

HistoricSpeedBuckethistoricSpeedBucket

See Transient Updates on page 40 for more details.List<Update>transientUpdates

Specifies whether to calculate a route with or without a toll
road. This is a Boolean type parameter. The default value

is False. If you set the value of avoidTollRoad to True,
the response contains a route without any toll roads. If the

value of avoidTollRoad is set to False, the route includes
toll roads.

BooleanavoidTollRoads

Specifies the number of local roads that can be loaded into
memory during route or matrix calculation. The number of
roads that can load is directly proportional to the value
selected in the parameter where 1 is the minimum and 3 is
the maximum value. Valid values can be 1,2, or 3. The
default is 1. See Local Roads Load Factor on page 128 for
a detailed description and impact of the parameter on routing
or matrix calculation.

Note: The parameter does not accept decimal
values.

StringlocalRoadsLoadFactor

23Global Routing SDK 3.0 User Guide

Using Java API

Code Example

Simple Route with start and end points.

IGRAInstance gra = IGRAInstanceFactory.getInstance(PROPERTY_FILE_OBJECT);
IPoint startPoint = new
Point(SpatialInfo.create(CoordSysConstants.longLatWGS84), new
DirectPosition(-73, 40));
IPoint endPoint = new
Point(SpatialInfo.create(CoordSysConstants.longLatWGS84), new
DirectPosition(-73, 41));
GetRouteRequest.Builder routeRequestBuilder = new
GetRouteRequest.Builder(startPoint, endPoint);
GetRouteRequest routeRequest = routeRequestBuilder . DBResource("US")
.build();
GetRouteResponse routeResponse = gra.getRoute(routeRequest);

Note: DBResource("US") is the name of the database resource to use in the request. This
parameter is not required if defaultDatabase is configured in JSON configuration file.

Commercial Vehicle Restrictions

Description

Commercial Vehicle Restrictions (CVR) are composed of directives to the routing engine that guides
the behavior and attributes of commercial vehicles making trips along the route. Depending upon
vehicle attributes provided (such as height, width, length, weight) and the commercial vehicle restriction
attributes present in the road network, the decision is made whether to allow for routing a particular
vehicle over a segment or not. If there is no commercial vehicle restriction attribute present in the
road network, input restriction parameters will not affect the resultant route.

Optional Parameters

Following optional parameters can be get/set in GetRouteRequest object:

24Global Routing SDK 3.0 User Guide

Using Java API

DescriptionTypeParameter

Specifies whether the barriers will be ignored when
determining the route.These restrictions are applicable when
a commercial vehicle is prohibited from traversing a segment
due to local ordinance or a commercial vehicle is allowed
on the segment but only when it must (for example, last mile
access, local delivery, and so on). Routes where a barrier
has been removed will still have a higher route cost even if
the route it shorter/faster than a route with no barrier.

BooleanlooseningBarrierRestrictions

Vehicle Attributes

These attributes specify the details of the vehicle on which the restrictions are applied.The attributes
can be vehicle type, height, weight, length, or width when determining the route. Commercial vehicles
are divided into different types ranging from short trailers to long triples. The Commercial Vehicle
Restrictions attribution is organized on a per-vehicle type basis. This means it is entirely possible for
a segment to be preferred for one vehicle type and the same segment have a restriction for another
type of vehicle. Use the following optional parameters to determine the vehicle's properties:

DescriptionTypeParameter

Choose either ALL or one of the types of vehicles:

• STRAIGHT
• SEMI_TRAILOR
• STANDARD_DOUBLE
• INTERMEDIATE_DOUBLE
• LONG_DOUBLE
• TRIPLE
• OTHER_LONG_COMBINATION_VEHICLE

StringvehicleType

Specifies the maximum weight of a vehicle. Any vehicles
over this value will be restricted when determining the route.
The units of weight are:

• kg
• lb
• mt
• t

Doubleweight

25Global Routing SDK 3.0 User Guide

Using Java API

DescriptionTypeParameter

Specifies the maximum height of a vehicle. Any vehicles
over this value will be restricted when determining the route.
The units of height are:

• ft
• yd
• mi
• m
• km

Doubleheight

Specifies the maximum length of a vehicle. Any vehicles
over this value will be restricted when determining the route.
The units of length are:

• ft
• yd
• mi
• m
• km

Doublelength

Specifies the maximum width of a vehicle. Any vehicles over
this value will be restricted when determining the route.The
units of width are:

• ft
• yd
• mi
• m
• km

Doublewidth

Note: You need to specify either weight/height or length/width along with its corresponding
unit. Based on the attributes value you can see variation in time and distance value and in
route cost also.

Code Example

Simple Route with start and end points.

IPoint startPoint = new
Point(SpatialInfo.create(CoordSysConstants.longLatWGS84), new
DirectPosition(-77.088217, 38.937072));
IPoint endPoint = new
Point(SpatialInfo.create(CoordSysConstants.longLatWGS84), new

26Global Routing SDK 3.0 User Guide

Using Java API

DirectPosition(-76.971986, 38.889853));
GetRouteRequest.Builder routeRequestBuilder = new
GetRouteRequest.Builder(startPoint, endPoint);
VehicleAttributes attributes = new VehicleAttributes(VehicleType.ALL);
attributes.setLooseningBarrierRestrictions(false);
Length height = new Length(50.0, LinearUnit.METER);
attributes.setHeight(height);

Length length = new Length(50.0, LinearUnit.METER);
attributes.setLength(length);

Length width = new Length(50.0, LinearUnit.METER);
attributes.setWidth(width);

Weight wgt = new Weight(20000, WeightUnit.POUND);
attributes.setWeight(wgt);

routeRequestBuilder.vehicleAttr(attributes);

GetRouteRequest routeRequest = routeRequestBuilder
 .returnSegmentGeometry(true)
 .DBResource("DC")
 .build();
GetRouteResponse routeResponse = m_gra.getRoute(routeRequest);

GetRouteCostMatrix

Description

GetRouteCostMatrix calculates the travel time and distances between an array of start and end
locations and returns the route that is either the fastest or the shortest. The result determines the
total time and distance of the individual routes (the route costs). For example if you input four start
points and four end points, a total of 16 routes will be calculated.

Required Parameters

The getRouteCostMatrix method under IGRAInstance interface, accepts an object of
GetRouteCostMatrixRequest class. The GetRouteCostMatrixRequest constructor must
have the following as parameters:

27Global Routing SDK 3.0 User Guide

Using Java API

DescriptionTypeParameter

Specifies the start location of the route.IPointstartPoint

Specifies the end location of the route.IPointendPoint

Optional Parameters

Following optional parameters can be get or set in GetRouteRequest object:

DescriptionTypeParameter

Specifies the name of the database resource used to run
the request.

StringdbResource

Specifies the coordinate system to return the route and
resulting geometries. The default is the coordinate system
of the data used.

CoordSysdestinationSrs

Specifies the type of optimizing to be used to calculate the
the route. The default value is OptimizeBy.TIME. Available
values are:

• OptimizeBy.TIME
• OptimizeBy.DISTANCE.

OptimizeByoptimizeBy

Specifies the units to return distance. The default is
LinearUnit.METER. Available values are:

• LinearUnit.METER
• LinearUnit.KILOMETER
• LinearUnit.YARD
• LinearUnit.FOOT/LinearUnit.FT
• LinearUnit.MILE

LinearUnitdistanceUnit

Specifies the units to return time. The default is
TimeUnit.MINUTE. Available values are:

• TimeUnit.MINUTE
• TimeUnit.MILLISECOND
• TimeUnit.SECOND
• TimeUnit.HOUR

TimeUnittimeUnit

28Global Routing SDK 3.0 User Guide

Using Java API

DescriptionTypeParameter

Specifies whether to include all roads in the calculation or
just major roads. If you choose to include only major roads,
performance will improve but accuracy may decrease. The
default is false.

BooleanmajorRoads

Specifies whether to return only the optimized route for each
start point/end point combination. The default is true. The
optimized route is either the fastest route or the shortest
distance, depending on the optimizeBy parameter.

BooleanreturnOptimalRoutesOnly

Specifies the priority to give to different types of roads when
determining the route. The road type is the format as
described in the ambientSpeeds option in
GetTravelBoundary. road type priority can be of the
following format:

• RoadTypePriority.HIGH: Prefer the road type over other
road types

• RoadTypePriority.MEDIUM: Give this road type equal
preference with other road types. If no preference is
specified for a road type, the default is Medium.

• RoadTypePriority.LOW: Prefer other road types over
this road type.

• RoadTypePriority.AVOID: Exclude the road type from
routes if possible. It is not always possible to exclude a
road type from the travel directions. Depending on the
situation, the alternative to an avoided road type may be
so poor that the software will choose a route that uses an
avoided road type. Also, if the starting or ending point lies
along a segment whose road type has been avoided, the
software will still use that segment.

Map[RoadType,
RoadTypePriority]

roadTypePreferences

29Global Routing SDK 3.0 User Guide

Using Java API

DescriptionTypeParameter

Specifies whether the routing calculation uses the historic
traffic speeds. These speeds are based on different
time-of-day buckets. The data must have historic traffic
speeds included in order to use this feature. The data for
each country/region has the same bucket definitions, where
the speeds for these bucket values may vary. The options
are:

• HistoricSpeedBucket.NONE: The default value. Historic
traffic data is not used in the calculation. Instead an
averaged speed value is used.

• HistoricSpeedBucket.AMPEAK: Calculate routes with
the peak AM speeds. The AMPeak time bucket is from
07:00 to 10:00 hrs. time of day.

• HistoricSpeedBucket.PMPEAK: Calculate routes with
the peak PM speeds. The PMPeak time bucket is from
16:00 to 19:00 hrs. time of day.

• HistoricSpeedBucket.OFFPEAK: Calculate routes with
the off peak (daytime) speeds. The OffPeak time bucket
is from 10:00 to 16:00 hrs. time of day.

• HistoricSpeedBucket.NIGHT: Calculate routes with the
nighttime speeds. The Night time bucket is from 22:00 to
04:00 hrs. time of day.

HistoricSpeedBuckethistoricSpeedBucket

See Transient Updates on page 40 for more details.List<Update>transientUpdates

Specifies whether to calculate a route with or without a toll
road. This is a Boolean type parameter. The default value

is False. If you set the value of avoidTollRoad to True,
the response contains a route without any toll roads. If the

value of avoidTollRoad is set to False, the route includes
toll roads.

BooleanavoidTollRoads

Specifies the number of local roads that can be loaded into
memory during route or matrix calculation. The number of
roads that can load is directly proportional to the value
selected in the parameter where 1 is the minimum and 3 is
the maximum value. Valid values can be 1,2, or 3. The
default is 1. See Local Roads Load Factor on page 128 for
a detailed description and impact of the parameter on routing
or matrix calculation.

Note: The parameter does not accept decimal
values.

StringlocalRoadsLoadFactor

30Global Routing SDK 3.0 User Guide

Using Java API

Code Example

Simple Route with start and end points.

IGRAInstance gra = IGRAInstanceFactory.getInstance(PROPERTY_FILE_OBJECT);
IPoint startPoint1 = new
Point(SpatialInfo.create(CoordSysConstants.longLatWGS84), new
DirectPosition(-73.994062, 40.76312));
IPoint startPoint2 = new
Point(SpatialInfo.create(CoordSysConstants.longLatWGS84), new
DirectPosition(-73.985124, 40.765067));
IPoint endPoint1 = new
Point(SpatialInfo.create(CoordSysConstants.longLatWGS84), new
DirectPosition(-74.005972, 40.714269));
IPoint endPoint2 = new
Point(SpatialInfo.create(CoordSysConstants.longLatWGS84), new
DirectPosition(-73.9978, 40.7509));
List<IPoint> startPoints = new ArrayList<>();
startPoints.add(startPoint1);
startPoints.add(startPoint2);
List<IPoint> endPoints = new ArrayList<>();
endPoints.add(endPoint1);
endPoints.add(endPoint2);
GetRouteCostMatrixRequest.Builder costMatrixRequestBuilder = new
GetRouteCostMatrixRequest.Builder(startPoints, endPoints);
GetRouteCostMatrixRequest matrixRequest =
costMatrixRequestBuilder.DBResource("US").build();
GetRouteCostMatrixResponse matrixResponse =
gra.getRouteCostMatrix(matrixRequest);

Note: DBResource("US") is the name of the database resource to use in the request. This
parameter is not required if defaultDatabase is configured in the JSON configuration file.

Commercial Vehicle Restrictions

Description

Commercial Vehicle Restrictions (CVR) are composed of directives to the routing engine that guides
the behavior and attributes of commercial vehicles making trips along the route. Depending upon
vehicle attributes provided (such as height, width, length, weight) and the commercial vehicle restriction
attributes present in the road network, decision is made whether to allow to route a particular vehicle
over a segment or not. If there is no commercial vehicle restriction attribute present in road network,
input restriction parameters will have no effect in the resultant route.

31Global Routing SDK 3.0 User Guide

Using Java API

Optional Parameters

Following optional parameters can be get or set in GetRouteRequest object:

DescriptionTypeParameter

Specifies that barriers will be ignored when determining the
route.These restrictions are most often when a commercial
vehicle is prohibited from traversing a segment due to local
ordinance or a commercial vehicle is allowed on the segment
but only when it must (for example, last mile access, local
delivery, and so on). Routes where a barrier has been
removed will still have a higher route cost even if the route
it shorter/faster than a route with no barrier

BooleanlooseningBarrierRestrictions

Vehicle Attributes

These attributes specify the details of the vehicle on which the restrictions are applied.The attributes
can be vehicle type, height, weight, length, or width when determining the route. Commercial vehicles
are divided into different types ranging from short trailers to long triples. The Commercial Vehicle
Restrictions attribution is organized on a per-vehicle type basis. This means it is entirely possible for
a segment to be preferred for one vehicle type and the same segment have a restriction for another
type of vehicle. Use the following types of vehicle information. Use the following optional parameters
to determine the vehicle's properties:

DescriptionTypeParameter

Choose either ALL or one of the types of vehicles:

• STRAIGHT
• SEMI_TRAILOR
• STANDARD_DOUBLE
• INTERMEDIATE_DOUBLE
• LONG_DOUBLE
• TRIPLE
• OTHER_LONG_COMBINATION_VEHICLE.

StringvehicleType

32Global Routing SDK 3.0 User Guide

Using Java API

DescriptionTypeParameter

Specifies the maximum weight of a vehicle. Any vehicles
over this value will be restricted when determining the route.
The units of weight are:

• kg
• lb
• mt
• t

doubleweight

Specifies the maximum height of a vehicle. Any vehicles
over this value will be restricted when determining the route.
The units of height are:

• ft
• yd
• mi
• m
• km

doubleheight

Specifies the maximum length of a vehicle. Any vehicles
over this value will be restricted when determining the route.
The units of length are:

• ft
• yd
• mi
• m
• km

doublelength

Specifies the maximum width of a vehicle. Any vehicles over
this value will be restricted when determining the route.The
units of width are:

• ft
• yd
• mi
• m
• km

doublewidth

Note: You need to specify either weight/height or length/width along with its corresponding
unit. Based on the attributes value you can see variation in time and distance value and in
route cost also.

33Global Routing SDK 3.0 User Guide

Using Java API

Code Example

Simple Route with start and end points.

IPoint startPoint1 = new
Point(SpatialInfo.create(CoordSysConstants.longLatWGS84), new
DirectPosition(-73.994062, 40.76312));
IPoint startPoint2 = new
Point(SpatialInfo.create(CoordSysConstants.longLatWGS84), new
DirectPosition(-73.985124, 40.765067));
IPoint endPoint1 = new
Point(SpatialInfo.create(CoordSysConstants.longLatWGS84), new
DirectPosition(-74.005972, 40.714269));
IPoint endPoint2 = new
Point(SpatialInfo.create(CoordSysConstants.longLatWGS84), new
DirectPosition(-73.9978, 40.7509));
List < IPoint > startPoints = new ArrayList < > ();
startPoints.add(startPoint1);
startPoints.add(startPoint2);
List < IPoint > endPoints = new ArrayList < > ();
endPoints.add(endPoint1);
endPoints.add(endPoint2);
boolean returnOptimalRoutes = true;
GetRouteCostMatrixRequest.Builder costMatrixRequestBuilder = new
GetRouteCostMatrixRequest.Builder(startPoints,
endPoints).returnOptimalRoutesOnly(returnOptimalRoutes).DBResource("US");
VehicleAttributes attributes = new VehicleAttributes(VehicleType.ALL);
attributes.setLooseningBarrierRestrictions(false);
Length height = new Length(50.0, LinearUnit.METER);
attributes.setHeight(height);
Length length = new Length(50.0, LinearUnit.METER);
attributes.setLength(length);
Length width = new Length(50.0, LinearUnit.METER);
attributes.setWidth(width);
Weight wgt = new Weight(20000, WeightUnit.POUND);
attributes.setWeight(wgt);
costMatrixRequestBuilder.vehicleAttr(attributes);
GetRouteCostMatrixRequest matrixRequest =
costMatrixRequestBuilder.build();
matrixResponse = m_gra.getRouteCostMatrix(matrixRequest);

34Global Routing SDK 3.0 User Guide

Using Java API

Persistent Updates

Description

The Persistent Update service allows a user to override aspects of the network. The overrides can
be done on a per-road type, at a specific point, or at a specific segment. The persistent update is
valid only for a specific data source and may not be valid after a data update.

Using persistent updates to make these types of modifications, you have the ability to:

• Exclude a point
• Exclude a segment
• Set the speed of a point, segment, or a road type
• Change (increase or decrease) the speed of a point, segment, or road type by a value
• Change (increase or decrease) the speed of a point, segment, or road type by a percentage

Types of Persistent Updates

The following is a description of the persistent update types.

PointUpdate

Point updates are changes applied to a corresponding point (X, Y). For a particular point, you can
exclude the point, set the speed of the point, or change (increase or decrease) the speed of the point
by a value or percentage. Use one of the following types of updates:

DescriptionPointUpdate Type

Specifies a speed update where you can replace the speed of the point by specifying
a percentage to increase (positive value) or decrease (negative value) the speed.

percentage

Specifies a speed update where you can define the new speed of the point by
specifying the new velocity. For speed updates, the velocity can have one of the
following values:

• kph (kilometers per hour)
• mph (miles per hour)
• mtps (meters per second)
• mtpm (meters per minute)

speed

35Global Routing SDK 3.0 User Guide

Using Java API

DescriptionPointUpdate Type

Specifies a speed update where you can define a change in the speed of the point
by specifying the change in the value.The speed velocity can be increased (positive
value) or decreased (negative value). For speed updates, the velocity can have
one of the following values:

• kph (kilometers per hour)
• mph (miles per hour)
• mtps (meters per second)
• mtpm (meters per minute)

speedAdjustment

Specifies a value to exclude the specified point from the route calculation.To exclude
a point you need to specify the point and exclude parameter defined as True. This
is a Boolean update type and valid values are true and false.

exclude

SegmentUpdate

Segment updates are changes applied to a corresponding segment ID. For a particular segment,
you can exclude the segment, set the speed of the segment, or change (increase or decrease) the
speed of the segment by a value or percentage. Use one of the following types of updates:

DescriptionSegmentUpdate Type

Specifies a speed update where you can define an increase in the speed of the

segmentID by specifying a percentage to increase (positive value) or decrease
(negative value) the speed.

percentage

Specifies a speed update where you define a new speed of the segmentID by
specifying the new velocity. For speed updates, the velocity can have one of the
following values:

• kph (kilometers per hour)
• mph (miles per hour)
• mtps meters per second
• mtpm (meters per minute)

speed

This is a speed update where you can define a change in the speed of the

segmentID by specifying the change in velocity. Speed values can be increased
(positive value) or decreased (negative value). For speed updates, the velocity can
have one of the following values:

• kph (kilometers per hour)
• mph (miles per hour)
• mtps (meters per second)
• mtpm (meters per minute)

speedAdjustment

36Global Routing SDK 3.0 User Guide

Using Java API

DescriptionSegmentUpdate Type

Specifies a value to exclude the specified segmentID from the route calculation.

To exclude a segmentID you need to specify the segmentID and exclude
parameter defined as True. This is a Boolean update type and valid values are
true and false.

exclude

Specifies a value to change the value of the road type for the segment for the route
calculation. This is a String update type.

See "roadType" list below.

roadType

roadType

Specifies a value to change the value of the road type for the segment for the route calculation. This
is a String update type. The roadType can be one of the following:

• access way
• back road
• connector
• ferry
• footpath
• limited access dense urban
• limited access rural
• limited access suburban
• limited access urban
• local road dense urban
• local road rural
• local road suburban
• local road urban
• major local road dense urban
• major local road rural
• major local road suburban
• major local road urban
• major road dense urban
• major road rural
• major road suburban
• major road urban
• minor local road dense Urban
• minor local road rural
• minor local road suburban
• minor local road urban
• normal road dense urban

37Global Routing SDK 3.0 User Guide

Using Java API

• normal road rural
• normal road rural
• normal road urban
• primary highway dense urban
• primary highway rural
• primary highway suburban
• primary highway urban
• ramp dense urban
• ramp limited access
• ramp major road
• ramp primary highway
• ramp rural
• ramp secondary highway
• ramp urban
• ramp suburban
• secondary highway dense urban
• secondary highway rural
• secondary highway suburban
• secondary highway urban

RoadTypeUpdate

Road type updates are changes applied to a corresponding road type. For a particular road type,
you can set the speed of the roadtype or change (increase or decrease) the speed of the road type
by a value or percentage. Use one of the following types of updates:

DescriptionRoadTypeUpdate Type

Specifies a speed update where you can define a change in the speed of the road
type by specifying a percentage to increase (positive value) or decrease (negative
value) the speed.

percentage

Specifies a speed update where you can define a new speed of the road type by
specifying the new velocity. For speed updates, the velocity unit can have one of
the following values:

• kph (kilometers per hour)
• mph (miles per hour)
• mtps (meters per second)
• mtpm (meters per minute)

speed

38Global Routing SDK 3.0 User Guide

Using Java API

DescriptionRoadTypeUpdate Type

Specifies a speed update where you can define a change in the speed of the road
type by specifying the change in velocity. Speed values can be increased (positive
value) or decreased (negative value). For speed updates, the velocity can have
one of the following values:

• kph (kilometers per hour)
• mph (miles per hour)
• mtps (meters per second)
• mtpm (meters per minute)

speedAdjustment

Code Examples

Point Update

IPoint point = new
Point(SpatialInfo.create(CoordSysConstants.longLatWGS84), new
DirectPosition(-73, 40));
Update pointUpdate = PointUpdate.buildPointSpeedUpdate(point, new
Velocity(20, VelocityUnit.MPH));
List < Update > updates = new ArrayList < > ();
updates.add(pointUpdate);
IGRAInstance m_gra =
IGRAInstanceFactory.getInstance(PROPERTY_FILE_OBJECT);
PersistentUpdateRequest updateReq = new PersistentUpdateRequest(updates);
PersistentUpdateResponse response =
m_gra.createPersistentUpdates(updateReq);

Segment Update

String SEGMENT_ID = "76ec2634:d0bfa";
Update segmentUpdate = SegmentUpdate.buildSegmentExclude(SEGMENT_ID,
true);
List < Update > updates = new ArrayList < > ();
updates.add(segmentUpdate);
IGRAInstance m_gra =
IGRAInstanceFactory.getInstance(PROPERTY_FILE_OBJECT);
PersistentUpdateRequest updateReq = new PersistentUpdateRequest(updates);

RoadType Update

Update roadTypeUpdate =
RoadTypeUpdate.buildRoadTypeSpeedUpdate(RoadType.ACCESS_WAY, new
Velocity(50, VelocityUnit.MPH));
List < Update > updates = new ArrayList < > ();
updates.add(roadTypeUpdate);
IGRAInstance m_gra =

39Global Routing SDK 3.0 User Guide

Using Java API

IGRAInstanceFactory.getInstance(PROPERTY_FILE_OBJECT);
PersistentUpdateRequest updateReq = new PersistentUpdateRequest(updates);
PersistentUpdateResponse response =
m_gra.createPersistentUpdates(updateReq);

Note: If you need to save persistent update at any location other than temp folder (which is
the default location), then you can add the persistent update file path against
routingUpdateFilePath property in resources/routing.properties file.To do this,
you need to declare following property in the resources/routing.properties file:

• routingUpdateFilePath=<ROUTING_UPDATE_FILE_PATH>

Transient Updates

Description

It allows you to set transient updates (point, segment, road type updates) for each request. For
instance, you can request a server attempt to avoid all of the major road types. Each request can
contain one or more updates. For speed updates, positive speed value is a speed increase and
negative speed value is a speed decrease.

The Transient Updates service allows a user to override aspects of the network. The overrides can
be done on a per-road type, at a specific point or at a specific segment. The Transient Update is
valid only for a specific data source and may not be valid after a data update.

Using the Transient Updates, you can perform the following:

• Exclude a point
• Exclude a segment
• Set the speed of a point, segment, or road type
• Change (increase or decrease) the speed of a point, segment, or road type by a value
• Change (increase or decrease) the speed of a point, segment, or road type by a percentage

The following is a description of the transient update types.

PointUpdate

Point updates are changes applied to a corresponding IPoint. For a particular point, you can: exclude
the point, set the speed of the point or change (increase or decrease) the speed of the point by a
value or percentage. Use one of the following types of updates:

40Global Routing SDK 3.0 User Guide

Using Java API

DescriptionPointUpdate Type

Specifies a speed update where you can define a change in the speed of the point by
specifying a percentage to increase (positive value) or decrease (negative value) the
speed.

percentage

Specifies a speed update where you can define the new speed of the point by specifying
the velocity unit and new velocity (positive value). For speed updates, the velocity unit
can have one of the following values:

• kph (kilometers per hour)
• mph (miles per hour)
• mtps (meters per second)
• mtpm (meters per minute)

speed

Specifies a speed update where you can define a change in the speed of the point by
specifying the change in velocity (unit and value). Speed values can be increased (positive
value) or decreased (negative value). For speed updates, the velocity unit can have one
of the following values:

• kph (kilometers per hour)
• mph (miles per hour)
• mtps (meters per second)
• mtpm (meters per minute)

speedAdjustment

Specifies a value to exclude the specified point from the route calculation. To exclude a
point you need to specify the point and exclude parameter defined as True. This is a
Boolean update type and valid values are true and false.

exclude

SegmentUpdate

Segment updates are changes applied to a corresponding segment ID. For a particular segment,
you can: exclude the segment, set the speed of the segment, change (increase or decrease) the
speed of the segment by a value or percentage, or change the road type of the segment. Use one
of the following types of updates:

DescriptionSegmentUpdate Type

Specifies a speed update where you can define a change in the speed of the segmentID
by specifying a percentage to increase (positive value) or decrease (negative value) the
speed.

percentage

41Global Routing SDK 3.0 User Guide

Using Java API

DescriptionSegmentUpdate Type

Specifies a speed update where you can define the new speed of the segmentID by
specifying the velocity unit and new velocity (positive value). For speed updates, the
velocity unit can have one of the following values:

• kph (kilometers per hour)
• mph (miles per hour)
• mtps (meters per second)
• mtpm (meters per minute)

speed

Specifies a speed update where you can define a change in the speed of the segmentID
by specifying the change in velocity (unit and value). Speed values can be increased
(positive value) or decreased (negative value). For speed updates, the velocity unit can
have one of the following values:

• kph (kilometers per hour)
• mph (miles per hour)
• mtps (meters per second)
• mtpm (meters per minute)

speedAdjustment

Specifies a value to exclude the specified segmentID from the route calculation. To

exclude a segmentID you need to specify the segmentID and exclude parameter
defined as True. This is a Boolean update type and valid values are true and false.

exclude

Specifies a value to change the value of the road type for the segment for the route
calculation. This is a String update type.

See "roadType" list below.

roadType

RoadTypeUpdate

Road type updates are changes applied to a corresponding road type. For a particular road type,
you can: set the speed of the roadtype, or change (increase or decrease) the speed of the road type
by a value or percentage. Use one of the following types of updates:

DescriptionRoadTypeUpdate Type

Specifies a speed update where you can define a change in the speed of the road type
by specifying a percentage to increase (positive value) or decrease (negative value)
the speed.

percentage

42Global Routing SDK 3.0 User Guide

Using Java API

DescriptionRoadTypeUpdate Type

Specifies a speed update where you can define the new speed of the road type by
specifying the velocity unit and new velocity. For speed updates, the velocity unit can
have one of the following values:

• kph (kilometers per hour)
• mph (miles per hour)
• mtps (meters per second)
• mtpm (meters per minute)

speed

Specifies a speed update where you can define a change in the speed of the road type
by specifying the change in velocity (unit and value). Speed values can be increased
(positive value) or decreased (negative value). For speed updates, the velocity unit can
have one of the following values:

• kph (kilometers per hour)
• mph (miles per hour)
• mtps (meters per second)
• mtpm (meters per minute)

speedAdjustment

See "roadType" list below.roadType

roadType

The roadType can be one of the following:

• LIMITED_ACCESS_DENSE_URBAN
• LIMITED_ACCESS_URBAN
• LIMITED_ACCESS_SUBURBAN
• LIMITED_ACCESS_RURAL
• PRIMARY_HIGHWAY_DENSE_URBAN
• PRIMARY_HIGHWAY_URBAN
• PRIMARY_HIGHWAY_SUBURBAN
• PRIMARY_HIGHWAY_RURAL
• SECONDARY_HIGHWAY_DENSE_URBAN
• SECONDARY_HIGHWAY_URBAN
• SECONDARY_HIGHWAY_SUBURBAN
• SECONDARY_HIGHWAY_RURAL
• MAJOR_ROAD_DENSE_URBAN
• MAJOR_ROAD_URBAN
• MAJOR_ROAD_SUBURBAN
• MAJOR_ROAD_RURAL
• NORMAL_ROAD_DENSE_URBAN

43Global Routing SDK 3.0 User Guide

Using Java API

• NORMAL_ROAD_URBAN
• NORMAL_ROAD_SUBURBAN
• NORMAL_ROAD_RURAL
• MAJOR_LOCAL_ROAD_DENSE_URBAN
• MAJOR_LOCAL_ROAD_URBAN
• MAJOR_LOCAL_ROAD_SUBURBAN
• MAJOR_LOCAL_ROAD_RURAL
• LOCAL_ROAD_DENSE_URBAN
• LOCAL_ROAD_URBAN
• LOCAL_ROAD_SUBURBAN
• LOCAL_ROAD_RURAL
• MINOR_LOCAL_ROAD_DENSE_URBAN
• MINOR_LOCAL_ROAD_URBAN
• MINOR_LOCAL_ROAD_SUBURBAN
• MINOR_LOCAL_ROAD_RURAL
• RAMP_DENSE_URBAN
• RAMP_URBAN
• RAMP_SUBURBAN
• RAMP_RURAL
• RAMP_LIMITED_ACCESS
• RAMP_PRIMARY_HIGHWAY
• RAMP_SECONDARY_HIGHWAY
• RAMP_MAJOR_ROAD
• FOOTPATH
• FERRY
• BACK_ROAD
• ACCESS_WAY
• CONNECTOR

Code Examples

GetRoute with Point Update

PointUpdate update = PointUpdate.buildPointExclude(new
Point(m_spatialInfo, m_tustartPosition), true);
List<Update> updates = new ArrayList<>();
updates.add(update);
GetRouteRequest.Builder routeRequestBuilder = new
GetRouteRequest.Builder(new Point(m_spatialInfo, m_tustartPosition),
new Point(m_spatialInfo, m_tuendPosition)).updates(updates);
GetRouteResponse routeResponse =
m_gra.getRoute(routeRequestBuilder.build());

44Global Routing SDK 3.0 User Guide

Using Java API

GetRouteCostMatrix request with Segment Updates

 SegmentUpdate update =
SegmentUpdate.buildSegmentSpeedAdjustment("76ec2634:14f2b3", new
Velocity(-11.0, VelocityUnit.MPH));
 List<Update> updates = new ArrayList<>();
 updates.add(update);
 GetRouteCostMatrixRequest.Builder costMatrixRequestBuilder = new
GetRouteCostMatrixRequest.Builder(startPoints,
endPoints).updates(updates);
 GetRouteCostMatrixResponse routeCostMatrixResponse =
m_gra.getRouteCostMatrix(costMatrixRequestBuilder.build());

GetRouteCostMatrix request with RoadType Updates

RoadTypeUpdate update = RoadTypeUpdate.buildRoadTypeSpeedPercentageUpdate
(RoadType.NORMAL_ROAD_DENSE_URBAN, 5);
List<Update> updates = new ArrayList<>();
updates.add(update);
GetRouteCostMatrixRequest.Builder costMatrixRequestBuilder = new
GetRouteCostMatrixRequest.Builder(startPoints,
endPoints).updates(updates);
GetRouteCostMatrixResponse routeCostMatrixTUResponse =
m_gra.getRouteCostMatrix(costMatrixRequestBuilder.build());

GetSegmentData

The GetSegmentData service returns segment information for a point or segment ID.When a point
is specified, the closest route segments are returned. When a segment ID is specified, the route
data for that specified route segment is returned.

Required Parameters

The getSegmentData method under the IGRAInstance interface, accepts an object of
GetSegmentDataRequest class. The builder class in GetSegmentDataRequest class has two
constructors: one accepts a IPoint and the other accepts a segmentID.

DescriptionTypeParameter

Specifies the location for which the
segment data is required.

IPointpoint

45Global Routing SDK 3.0 User Guide

Using Java API

DescriptionTypeParameter

Specifies the segment ID for which the
segment data is required.

StringsegmentID

Optional Parameters

Following optional parameters can be get or set in the GetSegmentDataRequest builder object:

DescriptionTypeParameter

Specifies the name of the database
resource used to run the request.

StringdbResource

Specifies the coordinate system to
return the segment data and resulting
geometry. The default value is the
coordinate system of the data used.

CoordSysdestinationSrs

Specifies the distance unit to be
returned. The default value is
LinearUnit.METER. The available
values are:

• LinearUnit.METER
• LinearUnit.KILOMETER
• LinearUnit.YARD
• LinearUnit.FOOT/LinearUnit.FT
• LinearUnit.MILE

LinearUnitdistanceUnit

Specifies the time-unit to be returned
The default value is TimeUnit.MINUTE.
The available values are:

• TimeUnit.MINUTE
• TimeUnit.MILLISECOND
• TimeUnit.SECOND
• TimeUnit.HOUR

TimeUnittimeUnit

46Global Routing SDK 3.0 User Guide

Using Java API

DescriptionTypeParameter

Specifies the velocity to be returned.
The default is VelocityUnit.MPH. The
available values are:

• VelocityUnit.MPH
• VelocityUnit.KPH
• VelocityUnit.MTPS
• VelocityUnit. MTPM

VelocityUnitvelocityUnit

Specifies the time-units to be returned.
The default is AngularUnit.DEGREE.
The available values are:

• AngularUnit.DEGREE
• AngularUnit. MINUTE
• AngularUnit. SECOND
• AngularUnit. RADIAN
• AngularUnit. GRADIAN

AngularUnitangularUnit

Specifies the style of geometry to be
returned. The default value is
SegmentGeometryStyle.ALL.

The available values are:

• SegmentGeometryStyle.ALL
• SegmentGeometryStyle.END
• SegmentGeometryStyle.NONE

SegmentGeometryStylesegmentGeometryStyle

Example Code

IGRAInstance gra = IGRAInstanceFactory.getInstance(PROPERTY_FILE_OBJECT);
IPoint point = new Point(SpatialInfo.create(CoordSysConstants.longLatWGS84),
 new DirectPosition(-73, 40));
GetSegmentDataRequest.Builder builder = new
GetSegmentDataRequest.Builder(point);
GetSegmentDataRequest request = builder.dbResource("US").build();
GetSegmentDataResponse response = gra.getSegmentData(request);

Note: DBResource("US") is the name of the database resource to use in the request. This
parameter is not required if the defaultDatabase is configured in the JSON configuration file.

47Global Routing SDK 3.0 User Guide

Using Java API

4 - Using REST API
The GRA REST API consists of HTTP GET or POST requests for
GetTravelBoundary, GetRoute, and GetRouteCostMatrix operations.

In this section

GetTravelBoundary...49
GetRoute..59
GetRouteCostMatrix...69
GetRouteCostMatrix HTTP POST Options..77
Response for Multiple Error in a Single Request.....................................84
GetSegmentData...85
PersistentUpdates..90
Transient Updates..104
GetCapabilities...111
DescribeDatasets...118
DescribeDatabases..120

GetTravelBoundary

Description

GetTravelBoundary determines a drive or walk time or distance of a boundary from a location.
This feature obtains polygons corresponding to an isochrone or isodistance calculation. An isochrone
is a polygon or set of points representing an area that can be traversed in a network from a starting
point in a given amount of time. An isodistance is a polygon or set of points representing the area
that is at a certain distance from the starting point.The GetTravelBoundary operation (also known
as an iso definition) takes a starting point, a unit (linear or time), one or more costs as input and
returns the resulting travel boundary. Costs refer to the amount of time or distance to use in calculating
an iso. Multiple costs can also be given as input. In case of multiple costs, costs can also be provided
as a comma delimited string.

Note: Response from REST service is not in JSON format.

HTTP GET URL Format

The following format is used for HTTP GET requests. HTTP GET is used for all travel boundaries
where no additional JSON payload is required (ambient speed changes).

HTTP GET
/webApp-context/services/databases/dbsource.json?q=travelBoundary&query_parameters

Where: dbsource is the name of the database that contains the data to use for the route. Use the
database name specified in the database resource file (dbList.json file). webApp-context is the
endpoint to your web application or service. If you are using the default database specified in the
database resource file, use default.json in the REST URL for dbsource.

HTTP POST URL Format

The following format is used for HTTP POST requests:

HTTP POST:
/webApp-context/services/databases/dbsource.json?q=travelBoundary&query_parameters
POST BODY: Content-Type:application/json {Route Data}

Route Data is the POST JSON body (Content-Type: application/json) for the additional
route information to be used in the calculation containing ambient speeds for road types. For
information and examples on these options, see GetTravelBoundary HTTP POST Options on page
56.

49Global Routing SDK 3.0 User Guide

Using REST API

Note: The response from REST request is in JSON format and the geometries will be of
GEOJSON format.

Query Parameters

This operation takes these query parameters.

DescriptionRequiredTypeParameter

Specifies the start location from where to calculate the
travel boundary in the format: x,y,coordSys. For
example, -74.2,40.8,epsg:4326

YesStringpoint

Specifies the cost distance or time, in the cost units
specified (can be a decimal value). For example, if the
unit specified is miles and you specify 10 in this
parameter, the travel boundary will be calculated for
how far you can travel 10 miles.You can also specify
multiple costs by specifying the values as a comma
delimited string. It will return a separate travel boundary
for every cost specified. If you specify multiple costs,
every response will have cost and cost units associated
with that response.

YesDoublecosts

specifies the type of metric used to calculate the travel
boundary. Available distance values are: m(meter),
km(kilometer), yd(yard), ft(foot), mi(mile). Available
time values are: min(minute), msec(millisecond),
s(second), h(hour).

YesStringcostUnit

Specifies the maximum distance to allow travel off the
road network using the maxOffroadDistanceUnit.
Examples of off-network roads include driveways and
access roads. For example, if you specify a maximum
off road distance of 1 mile the travel boundary will
extend no further than one mile from the network road.
If you specify a value of 0 the travel boundary will not
extend beyond the road itself. Use the ambient speed
options to specify the speed of travel along
non-network roads.

NoDoublemaxOffroadDistance

50Global Routing SDK 3.0 User Guide

Using REST API

DescriptionRequiredTypeParameter

Specifies the distance unit defining the
maxOffroadDistance.You must also define
maxOffroadDistance if you define this parameter.
Available distance values are:

• m (meter)
• km (kilometer)
• yd (yard)
• ft (foot)
• mi (mile)

NoStringmaxOffroadDistanceUnit

Specifies the coordinate system to return the travel
boundary geometries. The default is the coordinate
system of the data used (for example, epsg:4326).

NoStringdestinationSrs

Specifies whether to include all roads in the calculation
or just major roads. If you choose to include only major
roads, performance will improve but accuracy may
decrease. The default is true.

NoBooleanmajorRoads

Specifies whether you want to return holes, which are
areas within the larger boundary that cannot be
reached within the desired time or distance, based on
the road network. The default is false.

NoBooleanreturnHoles

Specifies whether you want to return islands, which
are small areas outside the main boundary that can
be reached within the desired time or distance. The
default is false.

NoBooleanreturnIslands

Specifies what percentage of the original points should
be returned or upon which the resulting complexity of
geometries should be based. A number between 0.0
and 1.0 is accepted, exclusive of 0.0 but inclusive of
1.0. Complexity increases as the value increases,
therefore 1.0 means the most complex. The default is
0.5.

NoIntegersimplificationFactor

51Global Routing SDK 3.0 User Guide

Using REST API

DescriptionRequiredTypeParameter

Specifies the style of banding to be used in the result.
Banding styles are the types of multiple distance bands
that can be displayed based on multiple costs. Banding
styles can be returned in the following formats:

• Donut: Each boundary is determined by subtracting
out the next smallest boundary. This is the default
method.

• Encompassing: Each boundary is determined
independent of all others.

NoStringbandingStyle

Specifies whether the routing calculation uses the
historic traffic speeds. These speeds are based on
different time-of-day buckets. The data must have
historic traffic speeds included in order to use this
feature.The data for each country/region has the same
bucket definitions, where the speeds for these bucket
values may vary. The options are:

• None: The default value. Historic traffic data is not
used in the calculation. Instead an averaged speed
value is used.

• AMPeak: Calculate routes with the peak AM speeds.
The AMPeak time bucket is from 07:00 to 10:00 hrs.
time of day.

• PMPeak: Calculate routes with the peak PM speeds.
The PMPeak time bucket is from 16:00 to 19:00 hrs.
time of day.

• OffPeak: Calculate routes with the off peak (daytime)
speeds. The OffPeak time bucket is from 10:00 to
16:00 hrs. time of day.

• Night: Calculate routes with the nighttime speeds.
The Night time bucket is from 22:00 to 04:00 hrs.
time of day.

NoStringhistoricTrafficTimeBucket

52Global Routing SDK 3.0 User Guide

Using REST API

DescriptionRequiredTypeParameter

Specifies the speed to travel when going off a network
road to find the travel boundary (for all road types). To
control how off-network travel is used in the travel
boundary calculation, you need to specify the speed
of travel off the road network (the ambient speed).
Ambient speed can affect the size and shape of the
travel boundary polygon. In general, the faster the
ambient speed, the larger the polygon. For example,
if you were at a point with 5 minutes left, and if the
ambient speed were 15 miles per hour, boundary points
would be put at a distance of 1.25 miles. If the ambient
speed were reduced to 10 miles per hour, boundary
points would be put at a distance of 0.83 miles.

Note:

• Default defaultAmbientSpeed is 15
• This parameter can also be specified in the

POST body. If the same parameter is set
in both GET and POST, then the value in
GET is considered.

NoStringdefaultAmbientSpeed

Specifies the unit of measure to use to calculate the
ambient speed. Available speed units are:

• MPH (miles per hour)
• KPH (kilometers per hour)
• MTPS (meters per second)
• MTPM (meters per minute)

Note:

• Default ambientSpeedUnit is MPH
• This parameter can also be specified in the

POST body. If the same parameter is set
in both GET and POST, then the value in
GET is considered.

NoStringambientSpeedUnit

53Global Routing SDK 3.0 User Guide

Using REST API

DescriptionRequiredTypeParameter

Specifies the percentage of the cost used to calculate
the distance between the starting point and the
isodistance (for all road types). Propagation factor
serves the same purpose for isodistances as ambient
speed does for isochrones, that is, it controls how
off-network travel is used in the travel boundary
calculation. Propagation factor can affect the size and
shape of the travel boundary polygon. In general, more
the propagation factor value, the larger the polygon.

It applies to isodistances. If this property is not
specified, then the calculation uses the server setting.
Valid values are between 0.0 and 1.0, both inclusive.

Note: The default propagationFactor is
0.16. This parameter can also be specified in
the POST body.If the same parameter is set
in both GET and POST, then the value in
POST is considered.

NoStringpropagationFactor

Specifies the version of the GetTravelBoundary
REST service. Valid values are 1 and 2. The default

value for version is 1.

NoStringversion

Examples

Travel boundary with a single cost.

http://server:port/webApp-context/services/databases/usroutedatabase.json?
q = travelBoundary & point = -77.092609, 38.871256, epsg: 4326 &
costs = 5 & costUnit = m

Response

{
 "travelBoundary": {
 “costs”: [{
 "cost": 5,
 "costUnit": "m",
 "geometry": {
 "type": "MultiPolygon",
 "crs": {
 "type": "name",
 "properties": {
 "name": "epsg: 4326"
 }

54Global Routing SDK 3.0 User Guide

Using REST API

 },
 "coordinates": [
 [
 [
 ...
]
]
]
 }
 }
]
 }
}

Travel boundary with multiple costs.

http:
//server:port/webApp-context/services/databases/usroutedatabase.json?
q = travelBoundary & point = -77.092609, 38.871256, epsg: 4326 &
costs = 2, 5 & costUnit = m

Response

{
 "travelBoundary": {
 "costs": [{
 "cost": 2,
 "costUnit": "m",
 "geometry": "{" type ":" MultiPolygon "," crs ":{" type ":" name ","
 properties ":{" name ":" epsg: 4326 "}}," coordinates ":[[[...]]]}"
 }, {
 "cost": 5,
 "costUnit": "m",
 "geometry": "{" type ":" MultiPolygon "," crs ":{" type ":" name ","
 properties ":{" name ":" epsg: 4326 "}}," coordinates ":[[[...]]]}"
 }
]
 }
}

Version specific error response

When you enter an invalid parameter value (for example, points falling outside of the boundaries) in
a request, the error response you get depends on the version entered by you. When the version is
1, you get value and error whereas when the version is 2, the response only contains the error.

• Request when version is 1:

http://server:port/webApp-context/services/databases/usroutedatabase.json?q=travelBoundary
&costs=5&costUnit=min&point=-14.321600,60.662859,epsg:4326&version=1

55Global Routing SDK 3.0 User Guide

Using REST API

• Response:

{
 "value": "Point outside boundaries: (-14.3216,60.662859,0)",
 "errors": [
 {
 "errorCode": 5008,
 "userMessage": "Point outside boundaries: (-14.3216,60.662859,0)"

 }
]
}

• Request when version is 2:

http://server:port/webApp-context/services/databases/usroutedatabase.json?q=travelBoundary
&costs=5&costUnit=min&point=-14.321600,60.662859,epsg:4326&version=2

• Response:

{
 "errors": [
 {
 "errorCode": 5008,
 "userMessage": "Point outside boundaries: (-14.3216,60.662859,0)"

 }
]
}

GetTravelBoundary HTTP POST Options

HTTP POST URL Format

In addition to the regular HTTP GET parameters, you can add a HTTP POST payload option to your
request that specifies ambient speed changes for road types. The content type must be set to
application/json. The following format is used for HTTP POST requests:

HTTP POST:
/webApp-context/services/databases/dbsource.json?q=travelBoundary&query_parameters
POST BODY: Content-Type:application/json {Route Data}

Route Data is the POST json body (Content-Type: application/json) for the additional route
information to be used in the calculation containing ambient speeds for road types.

56Global Routing SDK 3.0 User Guide

Using REST API

Ambient Speeds

It allows you to set ambient speed updates for each request. An ambient speed is a change to the
speed in the normal data to travel off a network road when finding the travel boundary. Examples of
off-network travel include driveways and access roads. The following is a description of the ambient
speed parameters:

DescriptionParameter

Specifies the speed to travel when going off a network road to find the travel boundary
(for all road types). To control how off-network travel is used in the travel boundary
calculation, you need to specify the speed of travel off the road network (the ambient
speed). Ambient speed can affect the size and shape of the travel boundary polygon.
In general, the faster the ambient speed, the larger the polygon. For example, if you
were at a point with 5 minutes left, and if the ambient speed were 15 miles per hour,
boundary points would be put at a distance of 1.25 miles. If the ambient speed were
reduced to 10 miles per hour, boundary points would be put at a distance of 0.83
miles.

Note: Default DefaultAmbientSpeed is 15

DefaultAmbientSpeed

Specifies the unit of measure to use to calculate the ambient speed. Available speed
units are:

• MPH (miles per hour)
• KPH (kilometers per hour)
• MTPS (meters per second)
• MTPM (meters per minute)

Note: Default AmbientSpeedUnit is MPH

AmbientSpeedUnit

Specifies the ambient speed to use for off-network travel based on the road type.
You must specify both the road type and the new speed for that road type.The speed
is defined in the AmbientSpeedUnit. Road types can be returned in all supported
types. For a list of road type enumerations, see REST API Road Type Enumeration
on page 135.

AmbientSpeed.RoadType

See Query Parameters on page 50 for description of propagationFactor.

Note: This parameter is only supported in getTravelBoundary version
2 is specified.

propagationFactor

57Global Routing SDK 3.0 User Guide

Using REST API

DescriptionParameter

Specifies the propagationFactor to use for off-network travel based on the road type.
You must specify both the road type and the new value of propagationFactor for that
road type. See propagationFactor to know more. Road types can be returned in
all supported types. For a list of road type enumerations, see REST API Road Type
Enumeration on page 135.

Note: This parameter is only supported in getTravelBoundary version
2 is specified.

RoadType

Specifies a comma-separated list of road types to be avoided during travel boundary
calculation. This is a String parameter. When a road type is provided as the value
of the parameter, the boundary excludes that type of roads in the calculation. For

example, if tollRoad is provided as the parameter value, the calculated boundary
will have no toll roads.

avoid

Example with ambient speed parameters in HTTP POST payload in gettravelboundary version 1.

{
 "DefaultAmbientSpeed": 45,
 "AmbientSpeedUnit": "MPH"

 "AmbientSpeed.RoadType.PrimaryHighwayUrban": 15,
 "AmbientSpeed.RoadType.SecondaryHighwayUrban": 10
}

Example with ambient speed and propagationFactor parameters in HTTP POST payload in
gettravelboundary version 2.

{
 "ambientSpeeds": {
 "defaultAmbientSpeed": 24,
 "ambientSpeedUnit": "MPH",
 "ambientSpeedOverrides": {
 "Primary Highway Urban": ".51",
 "Secondary Highway Urban": ".1"
 }
 },
 "propagationFactors": {

 "propagationFactor": "1",
 "propagationFactorOverrides": {
 "Primary Highway Urban": ".51",
 "Secondary Highway Urban": ".1"
 }
 }
}

58Global Routing SDK 3.0 User Guide

Using REST API

{
 "ambientSpeeds": {
 "ambientSpeedOverrides": {
 "Primary Highway Urban": 25,
 "Secondary Highway Urban": 10
 }
 },
 "propagationFactors": {

 "propagationFactor": "0.2",
 "propagationFactorOverrides": {
 "Primary Highway Urban": "0.51",
 "Secondary Highway Urban": "0.1"
 }
 }
}

Note: The response from REST request will be in JSON format and the geometries will be
of GEOJSON format.

GetRoute

Description

The GetRoute service returns routing information for a set of two distinct points or multiple points.
It takes a starting location and an ending location with optional intermediate points as input, and
returns the route that is either the fastest or the shortest.

Note: Response from REST service will be in JSON format and the geometry returned will
be in GeoJSON format

HTTP GET URL Format

The following format is used for HTTP GET requests. HTTP GET is used for simple routes where
no additional JSON payload is required. Intermediate points can also be added to the HTTP GET
request.

HTTP GET
/webApp-context/services/databases/dbsource.json?q=route&query_parameters

Where: dbsource is the name of the database that contains the data to use for the route. Use the
database name specified in the database resource file (dbList.json file). webApp-context is the

59Global Routing SDK 3.0 User Guide

Using REST API

endpoint to your web application or service. If you are using the default database specified in the
database resource file, use default.json in the REST URL for dbsource.

HTTP POST URL Format

The following format is used for HTTP POST requests:

HTTP POST:
/webApp-context/services/databases/dbsource.json?q=route&query_parameters
POST BODY: Content-Type:application/json {Route Data}

Route Data is the POST json body (Content-Type: application/json) for the additional route information
to be used in the calculation containing intermediate points or priority for road types. For information
and examples on these options, see GetRoute HTTP POST Options on page 67.

Query Parameters

This operation takes the following query parameters.

DescriptionRequiredTypeParameter

Specifies the start location of the route in the format:
x,y,coordSys. For example: -74.2,40.8,epsg:4326

YesStringstartPoint

Specifies the end location of the route in the format:
x,y,coordSys. For example: -74.2,40.8,epsg:4326

YesStringendPoint

Specifies the list of intermediate points to include along
the route. To include in the HTTP GET request, use
the format: Long,Lat,Long,Lat,…,coordsys. For
example: -74.2,40.8,-73,42,epsg:4326. To include a
set of intermediate points in a HTTP POST request,
add the MultiPoint JSON payload indicating the points
that the route will include. If intermediate points are
specified both in the URL and in the json payload, the
json payload is given preference, and the intermediate
points in URL are ignored.

NoStringintermediatePoints

Specifies a processing parameter that indicates if the
intermediate points should be optimized. The default
is false. By default the intermediate points will be used
in the calculation in the order specified. If set to true,
the specified points will be re-ordered in an optimal
manner during route computation.

NoBooleanoip

60Global Routing SDK 3.0 User Guide

Using REST API

DescriptionRequiredTypeParameter

Specifies whether to return the intermediate points with
the route response. The default is false.

For any value other that true or false, it will default to
false. This option will return the intermediate points in
order as specified in the POST body. If the value of
option oip is set to true, then this option will return
intermediate points in optimized order.

NoBooleanreturnIntermediatePoints

Specifies the coordinate system to return the route and
resulting geometries. The default is the coordinate
system of the data used.

NoStringdestinationSrs

Specifies the type of optimizing to use for the route.
Valid values are time or distance. The default is time.

NoStringoptimizeBy

Specifies the route directions include the distance
traveled. The default is true.

NoBooleanreturnDistance

Specifies the units to return distance. The default is m
(meter). Available values are:

• m (meter)
• km (kilometer)
• yd (yard)
• ft (foot)
• mi (mile)

NoStringdistanceUnit

Specifies the route directions including the time it takes
to follow a direction. The default is true.

NoBooleanreturnTime

Specifies the units to return time. The default is min
(minute). Available values are:

• min (minute)
• msec (millisecond)
• s (second)
• h (hour)

NoStringtimeUnit

61Global Routing SDK 3.0 User Guide

Using REST API

DescriptionRequiredTypeParameter

Specifies the language the travel directions should be
returned, only if route directions are returned (if

directionsStyle is defined as Normal or Terse). The
default being English (en).

Directions can be returned in all supported languages.
For a list of language enumerations, see REST API
Language Enumeration on page 137.

NoStringlanguage

Specifies wheher to include the geometry associated
with each route instruction in route response. The
default is false.

NoBooleanreturnDirectionGeometry

Specifies the type of route directions to be returned.
Default value is None. Specify this parameter if you
required route directions to be returned. The options
when specifying route directions are:

• None: No directions returned. Default, if not
specified.

• Normal: Directions are returned in a full format,
appropriate for web-based applications.

• Terse: Directions are returned in a short format,
appropriate for mobile applications.

NoStringdirectionsStyle

Specifies the format of the geometry that represents
a segment of the route. Default value is None. Specify
this parameter if you required segment geometries to
be returned. The options when specifying route
directions are:

• None: No geometric representation of a segment
will be returned. Default, if not specified.

• End: Each segment of the route will be returned with
just its endpoints in a LineString.

• All: Each segment will be returned with all its shape
points as a LineString. The LineString can be used
as an overlay on a map.

NoStringsegmentGeometryStyle

Specifies whether to return all names for a given street
in the directions or to return just the primary name for
a street. Only used when route directions are returned.
The default being false.

NoBooleanprimaryNameOnly

62Global Routing SDK 3.0 User Guide

Using REST API

DescriptionRequiredTypeParameter

Specifies whether to include all roads in the calculation
or just major roads. If you choose to include only major
roads, performance will improve but accuracy may
decrease. The default is false.

NoBooleanmajorRoads

Specifies whether the routing calculation uses the
historic traffic speeds. These speeds are based on
different time-of-day buckets. The data must have
historic traffic speeds included in order to use this
feature.The data for each country/region has the same
bucket definitions, where the speeds for these bucket
values may vary. The options are:

• None: The default value. Historic traffic data is not
used in the calculation. Instead an averaged speed
value is used.

• AMPeak: Calculate routes with the peak AM speeds.
The AMPeak time bucket is from 07:00 to 10:00 hrs.
time of day.

• PMPeak: Calculate routes with the peak PM speeds.
The PMPeak time bucket is from 16:00 to 19:00 hrs.
time of day.

• OffPeak: Calculate routes with the off peak (daytime)
speeds. The OffPeak time bucket is from 10:00 to
16:00 hrs. time of day.

• Night: Calculate routes with the nighttime speeds.
The Night time bucket is from 22:00 to 04:00hr time
of day.

NoStringhistoricTrafficTimeBucket

Specifies a comma-separated list of road types to be
avoided during route calculation. This is a String
parameter. When a road type is provided as the value
of the parameter, the route excludes that type of roads

in route calculation. For example, if tollRoad is
provided as the parameter value, the calculated route
contains a route without any toll roads.

NoStringavoid

Specifies the version of the GetRoute REST service.

Valid values are 1 and 2.The default value for version
is 1.

NoStringversion

63Global Routing SDK 3.0 User Guide

Using REST API

DescriptionRequiredTypeParameter

Specifies the number of local roads that can be loaded
into memory during route or matrix calculation. The
number of roads that can load is directly proportional
to the value selected in the parameter where 1 is the
minimum and 3 is the maximum value. Valid values
can be 1,2, or 3. The default is 1. See Local Roads
Load Factor on page 128 for a detailed description and
impact of the parameter on routing or matrix
calculation.

Note: The parameter does not accept
decimal values.

NoString
localRoadsLoadFactor

Examples

Simple Route with start and end points.

http://server:port/webApp-context/services/databases/usroutedatabase.json?q=route&startPoint=-73.97,40.79,epsg:4326&endPoint=-73.98,40.74,epsg:4326

Response

{
 "time": 7.67,
 "timeUnit": "min",
 "distance": 8865,
 "distanceUnit": "m"
}

Route with intermediate points.

http:
//server:port/webApp-context/services/databases/usroutedatabase.json?
q = route & startPoint = -73.970257, 40.794045, epsg: 4326 & endPoint =
 -73.972103, 40.786605,
epsg: 4326 & intermediatePoints = -73.976266, 40.788717, -73.973562,
40.792193, -73.971802, 40.794630,
epsg: 4326 & oip = true & returnIntermediatePoints = true

Response

"intermediatePoints": {
 "type": "MultiPoint",
 "coordinates": [
 [-73.971802,
 40.79463
],

64Global Routing SDK 3.0 User Guide

Using REST API

 [-73.973562,
 40.792193
],
 [-73.976266,
 40.788717
]
]
}

Route with directions enabled.

http:
//server:port/webApp-context/services/databases/usroutedatabase.json?
q = route & startPoint = -73.97, 40.79, epsg: 4326 & endPoint = -73.98,
 40.74,
epsg: 4326 & language = en & directionsStyle = Normal &
returnDirectionGeometry = true

Response

{
 "time": 10.58,
 "timeUnit": "min",
 "distance": 9035,
 "distanceUnit": "m",
 "language": "en",
 "directionsStyle": "Normal",
 "routeDirections": [
 {
 "time": 0.03,
 "timeUnit": "min",
 "distance": 25,
 "distanceUnit": "m",
 "instruction": "",
 "directionGeometry":
 {
 "type": "LineString",
 "coordinates": [[[...]]]

 }
 },
 {
 "time": 0.7,
 "timeUnit": "min",
 "distance": 394,
 "distanceUnit": "m",
 "instruction": "Turn right on W 91st St and travel West 394.0 m
 (0.7 min).",
 "directionGeometry":
 {
 "type": "LineString",

65Global Routing SDK 3.0 User Guide

Using REST API

 "coordinates": [[[...]]]
]
 }
 },
 {
 "time": 0.37,
 "timeUnit": "min",
 "distance": 352,
 "distanceUnit": "m",
 "instruction": "Turn left on Broadway and travel Southwest 352.0
 m (0.4 min).",
 "directionGeometry":
 {
 "type": "LineString",
 "coordinates": [[[...]]]

 }
 }
]
}

Version specific error response

When you enter an invalid parameter value (for example, points falling outside of the boundaries) in
a request, the error response you get depends on the version entered by you. When the version is
1, you get value and error whereas when the version is 2, the response only contains the error.

• Request when version is 1:

http://server:port/webApp-context/services/databases/usroutedatabase.json?
&q=route&startPoint=-14.321600,60.662859,epsg:4326&endPoint=-74.035208,40.695624,
epsg:4326&distanceUnit=km&version=1

• Response:

{
 "value": "Point outside boundaries: (-14.3216,60.662859,0)",
 "errors": [
 {
 "errorCode": 5008,
 "userMessage": "Point outside boundaries: (-14.3216,60.662859,0)"

 }
]
}

66Global Routing SDK 3.0 User Guide

Using REST API

• Request when version is 2:

http://server:port/webApp-context/services/databases/usroutedatabase.json?
&q=route&startPoint=-14.321600,60.662859,epsg:4326&endPoint=-74.035208,40.695624,
epsg:4326&distanceUnit=km&version=2

• Response:

{
 "errors": [
 {
 "errorCode": 5008,
 "userMessage": "Point outside boundaries: (-14.3216,60.662859,0)"

 }
]
}

GetRoute HTTP POST Options

HTTP POST URL Format

In addition to the regular HTTP GET parameters, you can add HTTP POST payload options to your
request that specify intermediate points and priority for road types. The content type must be set to
application/json. The following format is used for HTTP POST requests:

HTTP POST:
/webApp-context/services/databases/dbsource.json?q=route&query_parameters
POST BODY: Content-Type:application/json {Route Data}

Route Data is the POST json body (Content-Type: application/json) for the additional route information
to be used in the calculation containing ambient speeds for road types.

Intermediate Points

A list of intermediate points to include along the route. To include a set of intermediate points in a
HTTP POST request, add the MultiPoint JSON payload indicating the points that the route will include.
If intermediate points are specified both in the URL and in the json payload, the json payload is given
preference, and the intermediate points in URL are ignored.

Example intermediate points HTTP POST payload.

{
 "intermediatePoints": {
 "type": "MultiPoint",

67Global Routing SDK 3.0 User Guide

Using REST API

 "crs": {
 "type": "name",
 "properties": {
 "name": "epsg:4326"
 }
 },
 "coordinates": [[-73.976266, 40.788717], [-73.973562, 40.792193],
[-73.971802, 40.794630]]
 }
}

Transient Updates

See Transient Updates on page 104 for details.

Road Type Priority

It specifies the priority to be given to different types of roads when determining the route.The following
is a description of the road type priority options:

DescriptionOption

Prefer the road type over other road types.high

Give this road type equal preference with other road types. If no preference is
specified for a road type, the default is Medium.

medium

Prefer other road types over this road type.low

Exclude the road type from routes if possible. It is not always possible to exclude a
road type from the travel directions. Depending on the situation, the alternative to
an avoided road type may be so poor that the software will choose a route that uses
an avoided road type. Also, if the starting or ending point lies along a segment whose
road type has been avoided, the software will still use that segment.

avoid

Example road type priority HTTP POST payload.

{
 " roadTypesPriority ": {
 "RoadType.MajorRoadDenseUrban": "High",
 "RoadType.LimitedAccessDenseUrban": "Low",

68Global Routing SDK 3.0 User Guide

Using REST API

 "RoadType.LimitedAccessRural": "Medium",
 "RoadType.PrimaryHighwayUrban": "Avoid"
 }
}

GetRouteCostMatrix

Description

The GetRouteCostMatrix service calculates the travel time and distances between an array of
start and end locations and returns the route that is either the fastest or the shortest. The result
determines the total time and distance of the individual routes (the route costs). For example if you
input four start points and four end points, a total of 16 routes will be calculated.

Note: Response from REST service will be in JSON format and the geometry returned will
be in GeoJSON format

HTTP GET URL Format

The following format is used for HTTP GET requests. HTTP GET is used for simple cost calculations
where no additional JSON payload is required.

HTTP GET
/webApp-context/services/databases/dbsource.json?q=routeCostMatrix&query_parameters

Where: dbsource is the name of the database that contains the data to use for the route. Use the
database name specified in the database resource file (dbList.json file). webApp-context is the
endpoint to your web application or service. If you are using the default database specified in the
database resource file, use default.json in the REST URL for dbsource.

HTTP POST URL Format

The following format is used for HTTP POST requests:

HTTP POST:
/webApp-context/services/databases/dbsource.json?q=routeCostMatrix&query_parameters
POST BODY: Content-Type:application/json {Route Data}

Route Data is the POST json body (Content-Type: application/json) for the additional route
information to be used in the calculation if the list of input points exceeds the limits of the caller’s
URL buffer, as well as including priority for road-types.

69Global Routing SDK 3.0 User Guide

Using REST API

Query Parameters

This operation takes the following query parameters:

DescriptionRequiredTypeParameter

Specifies the start locations of the route in the format:
long,lat,long,lat,...,coordSys. For example:
-74.2,40.8,-73,42,epsg:4326

YesStringstartPoints

Specifies the end locations of the route in the format:
long,lat,long,lat,...,coordSys. For example:
-74.2,40.8,-73,42,epsg:4326

YesStringendPoints

Specifies the coordinate system to return the route and
resulting geometries. The default is the coordinate
system of the data used.

NoStringdestinationSrs

The type of optimizing to use for the route.Valid values
are time or distance. The default is time.

NoStringoptimizeBy

Specifies the route directions including the distance

traveled. The default is true. Both returnDistance
and returnTime parameters cannot be false in the
same request.

NoBooleanreturnDistance

Specifies the units to return distance. The default is m
(meter). Available values are:

• m (meter)
• km (kilometer)
• yd (yard)
• ft (foot)
• mi (mile)

NoStringdistanceUnit

Specifies the route directions including the time it takes
to follow a direction. The default is true. Both

returnDistance and returnTime parameters cannot
be false in the same request.

NoBooleanreturnTime

70Global Routing SDK 3.0 User Guide

Using REST API

DescriptionRequiredTypeParameter

Specifies the units to return time. The default is min
(minute). Available values are:

• min (minute)
• msec (millisecond)
• s (second)
• h (hour)

NoStringtimeUnit

Specifies whether to include all roads in the calculation
or just major roads. If you choose to include only major
roads, performance will improve but accuracy may
decrease. The default is false.

NoBooleanmajorRoads

Specifies whether to return only the optimized route
for each start point or end point combination. The
default is true.The optimized route is either the fastest
route or the shortest distance, depending on the

optimizeBy parameter.

NoBooleanreturnOptimalRoutesOnly

Specifies whether the routing calculation uses the
historic traffic speeds. These speeds are based on
different time-of-day buckets. The data must have
historic traffic speeds included in order to use this
feature.The data for each country/region has the same
bucket definitions, where the speeds for these bucket
values may vary. The options are:

• None: The default value. Historic traffic data is not
used in the calculation. Instead an averaged speed
value is used.

• AMPeak: Calculate routes with the peak AM speeds.
The AMPeak time bucket is from 07:00 to 10:00 hrs.
time of day.

• PMPeak: Calculate routes with the peak PM speeds.
The PMPeak time bucket is from 16:00 to 19:00 hrs.
time of day.

• OffPeak: Calculate routes with the off peak (daytime)
speeds. The OffPeak time bucket is from 10:00 to
16:00 hrs. time of day.

• Night: Calculate routes with the nighttime speeds.
The Night time bucket is from 22:00 to 04:00 hrs.
time of day.

NoStringhistoricTrafficTimeBucket

71Global Routing SDK 3.0 User Guide

Using REST API

DescriptionRequiredTypeParameter

Specifies a comma-separated list of road types to be
avoided during route calculation. This is a String
parameter. When a road type is provided as the value
of the parameter, the route excludes that type of roads

in route calculation. For example, if tollRoad is
provided as the parameter value, the calculated route
contains a route without any toll roads.

NoStringavoid

Specifies the version of the GetRouteCostMatrix
REST service. Valid values are 1 and 2. The default

value for version is 1.

NoStringversion

Specifies the number of local roads that can be loaded
into memory during route or matrix calculation. The
number of roads that can load is directly proportional
to the value selected in the parameter where 1 is the
minimum and 3 is the maximum value. Valid values
can be 1,2, or 3. The default is 1. See Local Roads
Load Factor on page 128 for a detailed description and
impact of the parameter on routing or matrix
calculation.

Note: The parameter does not accept
decimal values.

NoString
localRoadsLoadFactor

Examples

Cost matrix route with two start and two end points.

http:
//<server>:<port>/<webApp-context>/services/<databases>/usroutedatabase.json?
q = routeCostMatrix & startPoints = -73.56565, 40.5545, -73.46565,
40.4545, epsg: 4326 &
endPoints = -73.34343, 40.667, -73.14343, 40.267, epsg: 4326 &
returnOptimalRoutesOnly = true &
optimizeBy = distance & distanceUnit = km & timeUnit = min & majorRoads
 = true &
destinationSrs = epsg: 4322 & returnTime = false

Response

{
 "matrix":
 [{
 "startPoint": {

72Global Routing SDK 3.0 User Guide

Using REST API

 "type": "Point",
 "coordinates":
 [
 -73.56567672202618,
 40.554384822358614
],
 "crs": {
 "type": "name",
 "properties": {
 "name": "epsg:4322"
 }
 }
 },
 "endPoint": {
 "type": "Point",
 "coordinates":
 [
 -73.34345711862802,
 40.66688488742393
],
 "crs": {
 "type": "name",
 "properties": {
 "name": "epsg:4322"
 }
 }
 },
 "distance": 35.268,
 "distanceUnit": "km
 },
 {
 " startPoint ":
 {
 " type ": " Point ",
 " coordinates ":
 [
 -73.46567684021008,
 40.454384834155185
],
 " crs ":
 {
 " type ": " name ",
 " properties ":
 {
 " name ": " epsg: 4322 "
 }
 }
 },
 " endPoint ":
 {
 " type ": " Point ",
 " coordinates ":
 [

73Global Routing SDK 3.0 User Guide

Using REST API

 -73.34345711862802,
 40.66688488742393
],
 " crs ":
 {
 " type ": " name ",
 " properties ":
 {
 " name ": " epsg: 4322 "
 }
 }
 },
 " distance ": 44.444,
 " distanceUnit ": " km "
 }
]
 }

Version specific error response

When you enter an invalid parameter value (for example, points falling outside of the boundaries) in
a request, the error response you get depends on the version entered by you. When the version is
1, you get value and error whereas when the version is 2, the response only contains the error.

• Request when version is 1:

http://server:port/webApp-context/services/databases/usroutedatabase.json?
q=routeCostMatrix&startPoints=-73.56565,40.5545,-73.46565,40.4545,epsg:4326&
endPoints=-14.321600,60.662859,-73.14343,40.267,epsg:4326&version=1

• Response:

{
 "value": "Point outside boundaries: (-14.3216,60.662859,0)",
 "errors": [
 {
 "errorCode": 5008,
 "userMessage": "Point outside boundaries: (-14.3216,60.662859,0)"

 }
]
}

• Request when version is 2:

http://server:port/webApp-context/services/databases/usroutedatabase.json?
q=routeCostMatrix&startPoints=-73.56565,40.5545,-73.46565,40.4545,epsg:4326&
endPoints=-14.321600,60.662859,-73.14343,40.267,epsg:4326&version=2

74Global Routing SDK 3.0 User Guide

Using REST API

• Response:

{
 "errors": [
 {
 "errorCode": 5008,
 "userMessage": "Point outside boundaries: (-14.3216,60.662859,0)"

 }
]
}

Avoid Specific Routes

Toll Roads

Avoid Toll Roads feature

This feature allows the user to select a route with or without a toll road. This is a String parameter.
Avoid is the parameter in which tollroad can be provided as the value in a SOAP request. In this
case the resultant route will exclude toll roads while calculating the routes. The following example
explains how this parameter is used.

Example with toll road

The following example explains the feature with some imaginary points for a route, which contains
the avoid toll road parameter as <v1:Avoid>tollroad</v1:Avoid> in the request.

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:v1="http://www.mapinfo.com/routing/service/v1"

xmlns:v11="http://www.mapinfo.com/midev/service/geometries/v1">
 <soapenv:Header/>
 <soapenv:Body>
 <v1:RouteCostMatrixRequest id="?" locale="?">
 <!--Optional:-->

<v1:DatasetResourceName>${#Project#TollRoad_DB}</v1:DatasetResourceName>

 <v1:StartPoints srsName="epsg:4326">
 <!--Zero or more repetitions:-->
 <v11:Point srsName="epsg:4326">
 <v11:Pos>

75Global Routing SDK 3.0 User Guide

Using REST API

 <v11:X>12.822214</v11:X>
 <v11:Y>47.282809</v11:Y>
 </v11:Pos>
 </v11:Point>
 </v1:StartPoints>

 <v1:EndPoints srsName="epsg:4326">
 <!--Zero or more repetitions:-->
 <v11:Point srsName="epsg:4326">
 <v11:Pos>
 <v11:X>12.873852</v11:X>
 <v11:Y>46.871467</v11:Y>
 </v11:Pos>
 </v11:Point>

 </v1:EndPoints>

 <v1:DistanceUnit>Mile</v1:DistanceUnit>
 <v1:TimeUnit>Minute</v1:TimeUnit>
 <v1:ReturnOptimalRoutesOnly>true</v1:ReturnOptimalRoutesOnly>
 <v1:OptimizeBy>distance</v1:OptimizeBy>
 <v1:MajorRoads>false</v1:MajorRoads>
 <v1:ReturnDistance>true</v1:ReturnDistance>
 <v1:ReturnTime>true</v1:ReturnTime>
 <v1:Avoid>tollroad</v1:Avoid>
 <v1:HistoricTrafficTimeBucket>none</v1:HistoricTrafficTimeBucket>

 </v1:RouteCostMatrixRequest>
 </soapenv:Body>
</soapenv:Envelope>

Example without toll road

The following example explains the feature with some imaginary points for a route, which does not
contain the avoid toll road parameter in the request.

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:v1="http://www.mapinfo.com/routing/service/v1"

xmlns:v11="http://www.mapinfo.com/midev/service/geometries/v1">
 <soapenv:Header/>
 <soapenv:Body>
 <v1:RouteCostMatrixRequest id="?" locale="?">
 <!--Optional:-->

<v1:DatasetResourceName>${#Project#TollRoad_DB}</v1:DatasetResourceName>

 <v1:StartPoints srsName="epsg:4326">

76Global Routing SDK 3.0 User Guide

Using REST API

 <!--Zero or more repetitions:-->
 <v11:Point srsName="epsg:4326">
 <v11:Pos>
 <v11:X>12.822214</v11:X>
 <v11:Y>47.282809</v11:Y>
 </v11:Pos>
 </v11:Point>
 </v1:StartPoints>

 <v1:EndPoints srsName="epsg:4326">
 <!--Zero or more repetitions:-->
 <v11:Point srsName="epsg:4326">
 <v11:Pos>
 <v11:X>12.873852</v11:X>
 <v11:Y>46.871467</v11:Y>
 </v11:Pos>
 </v11:Point>

 </v1:EndPoints>

 <v1:DistanceUnit>Mile</v1:DistanceUnit>
 <v1:TimeUnit>Minute</v1:TimeUnit>
 <v1:ReturnOptimalRoutesOnly>true</v1:ReturnOptimalRoutesOnly>
 <v1:OptimizeBy>distance</v1:OptimizeBy>
 <v1:MajorRoads>false</v1:MajorRoads>
 <v1:ReturnDistance>true</v1:ReturnDistance>
 <v1:ReturnTime>true</v1:ReturnTime>

 <v1:HistoricTrafficTimeBucket>none</v1:HistoricTrafficTimeBucket>

 </v1:RouteCostMatrixRequest>
 </soapenv:Body>
</soapenv:Envelope>

GetRouteCostMatrix HTTP POST Options

HTTP POST URL Format

In addition to the regular HTTP GET parameters, you can add HTTP POST payload options to your
request that specifies priority for road types. The HTTP POST payload can also be used if the list

77Global Routing SDK 3.0 User Guide

Using REST API

of input points exceeds the limits of the caller’s URL buffer. The content type must be set to
application/json. The following format is used for HTTP POST requests:

HTTP POST:
/webApp-context/services/databases/dbsource.json?q=routeCostMatrix&query_parameters
POST BODY: Content-Type:application/json {Route Data}

Route Data is the POST json body (Content-Type: application/json) for the additional route
information to be used in the calculation containing ambient speeds for road types.

Define Start and End Points

To include a set of start or end points in a HTTP POST request, add the MultiPoint JSON payload
indicating the points that the route will include. When Start and End points are defined in the HTTP
POST payload, the startPoints and endPoints parameters are not mandatory query parameters in
the URL. If they are defined in the URL they are ignored. A warning message is logged in
spectrum-server.log file when points in URL are ignored.

Example start points HTTP POST payload.

{
 "startPoints": {
 "type": "MultiPoint",
 "crs": {
 "type": "name",
 "properties": {
 "name": "epsg:4326"
 }
 },
 "coordinates": [[-73.976266, 40.788717],
 [-73.973562, 40.792193], [-73.971802, 40.794630]]
 }
}

Example end points HTTP POST payload.

{
 "endPoints": {
 "type": "MultiPoint",
 "crs": {
 "type": "name",
 "properties": {
 "name": "epsg:4326"
 }
 },
 "coordinates": [[-73.976266, 40.788717],
 [-73.973562, 40.792193], [-73.971802, 40.794630]]
 }
}

78Global Routing SDK 3.0 User Guide

Using REST API

Commercial Vehicle Restrictions

Commercial vehicle restrictions are composed of directives to the routing engine that guides the
behavior and attributes of commercial vehicles making trips along the route. Depending upon vehicle
attributes provided (such as height, width, length, weight) and the commercial vehicle restriction
attributes present in the road network, decision is made whether to allow to route a particular vehicle
over a segment or not. If there is no commercial vehicle restriction attribute present in road network,
input restriction parameters will have no effect in the resultant route.

Following are the set of parameters for commercial vehicle restrictions.

looseningBarrierRestrictions

Specifies that the barriers will be removed when determining the route. These restrictions are most
often when a commercial vehicle is prohibited from traversing a segment due to local ordinance or
a commercial vehicle is allowed on the segment but only when it must (for example, last mile access,
local delivery, and so on). Routes where a barrier has been removed will still have a higher route
cost even if the route it shorter/faster than a route with no barrier.

vehicleAttributes

Specifies that details of the vehicle that will be restricted based on the type, height, weight, length,
or width when determining the route. Commercial vehicles are divided into different types ranging
from short trailers to long triples. The Commercial Vehicle Restrictions attribution is organized on a
per-vehicle type basis.This means it is entirely possible for a segment to be preferred for one vehicle
type and the same segment have a restriction for another type of vehicle. Use the following types
of vehicle information:

DescriptionvehicleAttributes Types

Choose either ALL or one of the types of vehicles:

• STRAIGHT
• SEMI_TRAILOR
• STANDARD_DOUBLE
• INTERMEDIATE_DOUBLE
• LONG_DOUBLE
• TRIPLE
• OTHER_LONG_COMBINATION_VEHICLE

vehicleType

Specifies the maximum weight of a vehicle. Any vehicles
over this value will be restricted when determining the route.
The units of weight are:

• kg
• lb
• mt
• t

weight

79Global Routing SDK 3.0 User Guide

Using REST API

DescriptionvehicleAttributes Types

Specifies the maximum height of a vehicle. Any vehicles
over this value will be restricted when determining the route.
The units of height are:

• ft
• yd
• mi
• m
• km

height

Specifies the maximum length of a vehicle. Any vehicles
over this value will be restricted when determining the route.
The units of length are:

• ft
• yd
• mi
• m
• km

length

Specifies the maximum width of a vehicle. Any vehicles over
this value will be restricted when determining the route.The
units of width are:

• ft
• yd
• mi
• m
• km

Note: You need to specify either weight/height or
length/width along with its corresponding unit.

width

Transient Updates

See Transient Updates on page 104for details.

Examples

Without Vehicle Restrictions

80Global Routing SDK 3.0 User Guide

Using REST API

Request

HTTP GET /webApp-context/services/databases/US_CVR.json?q=route&
startPoint=-74.7221203,42.9737073,epsg:4326& endPoint
=-74.6671887,42.8097083,epsg:4326

Response

{
 "distance": 24.87,
 "distanceUnit": "mi",
 "time": 36.57,
 "timeUnit": "min"
}

With Vehicle Restrictions Request

HTTP POST /webApp-context/services/databases/US_CVR.json?q=route&
startPoint=-74.7221203,42.9737073,
epsg:4326& endPoint=-74.6671887,42.8097083,epsg:4326
POST BODY: Content-Type:application/json {CVR Data}

Commercial Vehicle Restriction HTTP POST payload.

{
 "cvr": {
 "looseningBarrierRestrictions": "n",
 "vehicleAttributes": {
 "vehicleType": "ALL",
 "heightUnit": "meter",
 "height": "4",
 "weightUnit": "Kilogram",
 "weight": "40000"
 }
 }
}

Response:

{
 "distance": 27.92,
 "distanceUnit": "mi",
 "time": 37.48,
 "timeUnit": "min"
}

The two routes in the map below show the CVR applied for the same start and end locations. The
route displayed in the brown color is the one without CVR and the route displayed in the red color
is with CVR. Notice the deviation in route in the beginning of the journey; this is due to the height
and weight restrictions applied to them.

81Global Routing SDK 3.0 User Guide

Using REST API

Road Type Priority

Specifies the priority to give to different types of roads when determining the route. The following is
a description of the road type priority options:

DescriptionOption

Prefer the road type over other road types.high

Give this road type equal preference with other road types. If no preference is
specified for a road type, the default is Medium.

medium

Prefer other road types over this road type.low

Exclude the road type from routes if possible. It is not always possible to exclude a
road type from the travel directions. Depending on the situation, the alternative to
an avoided road type may be so poor that the software will choose a route that uses
an avoided road type. Also, if the starting or ending point lies along a segment whose
road type has been avoided, the software will still use that segment.

avoid

Example road type priority HTTP POST payload.

{
 " roadTypesPriority ": {

82Global Routing SDK 3.0 User Guide

Using REST API

 "RoadType.MajorRoadDenseUrban": "High",
 "RoadType.LimitedAccessDenseUrban": "Low",
 "RoadType.LimitedAccessRural": "Medium",
 "RoadType.PrimaryHighwayUrban": "Avoid"
 }
}

Matrix Partial Response and Warnings

The Matrix request excludes problematic points from the calculation to process the request. Any
problematic points are, therefore, excluded from the response.

A response, which contains time and distance between points, also includes a “warnings” section
with information about problematic points in the request that were excluded from the calculation.
Warnings list the problematic points. Each object in the list contains the error code for that point and
an error description.

The warning message is available in REST version 2, SOAP services introduced in version 2020.1
and later, SDK(GRS), and stages introduced in version 2020.1 and later.

Request

Example start points HTTP POST payload.

http://www.precisely.com/rest/Spatial/erm/databases/usroutedatabase.json?
q=routeCostMatrix&startPoints=-74.015547,40.756962,-73.46565,40.4545,
epsg:4326&endPoints=-73.47565,40.4645,epsg:4326&version=2

Response

{
 "matrix": [
 {
 "distanceUnit": "m",
 "distance": 30771.0,
 "timeUnit": "min",
 "time": 89.93,
 "startPoint": {
 "type": "Point",
 "coordinates": [
 -73.46565,
 40.4545
]
 },
 "endPoint": {
 "type": "Point",

83Global Routing SDK 3.0 User Guide

Using REST API

 "coordinates": [
 -73.47565,
 40.4645
]
 }
 }
],
 "warnings": [
 {
 "code": 6002,
"message": "Path could not be calculated between start point
(-74.015547,40.756962,0) and end point (-73.47565,40.4645,0)."
 }
]
}

Response for Multiple Error in a Single Request

In case when an error occurs for REST when a request contains invalid query parameters in GET
URL or invalid payload for POST, we get a cumulative error response in one go in a JSON array.

For example, in case of a GetTravelBoundary request:

http://<server>:<port>/<webApp-context>/services/databases/<usroutedatabase>.json?q=travelBoundary&costs=5,a&costUnit=mindd

Response

{
 "errors":
 [{
 "errorCode": 4179,
 "userMessage": "Error parsing Point CoordSys"
 }, {
 "errorCode": 3010,
 "userMessage": "Invalid costUnit: minddd"
 }, {
 "errorCode": 3023,
 "userMessage": "Invalid getTravelBoundary cost, must be a positive
number : a, v"
 }
],
 "value": "Error parsing Point CoordSys"
}

84Global Routing SDK 3.0 User Guide

Using REST API

The same error processing applies for GetRoute and GetRouteCostMatrix operations. The
value node in the response JSON is deprecated and will be removed in future releases. For error
checking only the errors node should be utilized.

GetSegmentData

Description

The GetSegmentData service returns segment information for a point or segment ID.When a point
is specified, the closest route segments are returned. When a segment ID is specified, the route
data for that specified route segment data is returned.

Note: The response from the REST service comes in JSON format.When a request contains
invalid query parameters in the GET URL , a cumulative error response is returned in a JSON
array.The value node in the response JSON is deprecated. For error checking, only the errors
node should be utilized.

HTTP GET URL Format

The following format is used for HTTP GET requests.The HTTP GET requests are different for either
returning segment data at a point, or returning segment data for a segment ID.

Returning data for a segment at a specified point:

HTTP GET /webApp-context/services/databases/dbsource/
segments.json?point=x,y,srsName&query_parameters

Returning data for a specified segment:

HTTP GET /webApp-context/services/databases/dbsource/segments/
segmentID.json?query_parameters

Where dbsource is the name of the database that contains the data to use for the route. Use the
database name specified in the Database Resource tool. The segmentID is segment identifier you
want to return the data.

Query Parameters

This operation takes these query parameters.

85Global Routing SDK 3.0 User Guide

Using REST API

DescriptionRequiredTypeParameter

Specifies the coordinate system to return the segment
data and resulting geometry. The default is the
coordinate system of the data used.

NoStringdestinationSrs

Specifies the units to return distance. The default is m
(meter). Available values are:

• m (meter)
• km (kilometer)
• yd (yard)
• ft (foot)
• mi (mile)

NoStringdistanceUnit

Specifies the units to return time. The default is min
(minute). Available values are:

• min (minute)
• msec (millisecond)
• s (second)
• h (hour)

NoStringtimeUnit

Specifies the units in which the speed will be returned.
The default is mph (miles per hour). Available values
are:

• mph (miles per hour)
• kph (kilometers per hour)

NoStringvelocityUnit

Specifies the units to return turn angles. The default
is deg (degree). Available values are:

• deg (degree)
• rad (radian)
• minute (minute)
• sec (second)
• grad (grad)

NoStringangularUnit

86Global Routing SDK 3.0 User Guide

Using REST API

DescriptionRequiredTypeParameter

Specifies the format of the geometry that represents
a segment of the route. Default value is None. Specify
this parameter if you required segment geometries to
be returned. The options when specifying route
directions are:

• None: No geometric representation of a segment
will be returned. Default, if not specified.

• End: Each segment of the route will be returned with
just its endpoints in a LineString.

• All: Each segment will be returned with all its shape
points as a LineString.The LineString can be
used as an overlay on a map.

NoStringsegmentGeometryStyle

Specifies the version of the GetSegmentData REST
service. Valid values are 1 and 2. The default value

for version is 1.

NoStringversion

Examples

Return segment data specifying a point

http://<server>:<port>/<webApp-context>/services/databases/<US>/
segments.json?point=-77,38,epsg:4326&segmentGeometryStyle=all

Response

[{
 "segmentID": "aa18eb33:1b7bbe",
 "primaryName": "VA-631",
 "primaryNameLanguage": "en",
 "alternateNames": [{
 "alternateName": "Lloyds Rd",
 "language": "en"
 }, {
 "alternateName": "VA-631",
 "language": "en"
 }
],
 "segmentLength": 4.954,
 "segmentLengthUnit": "mi",
 "timeTaken": 5.9333,
 "timeUnit": "min",
 "turnAngle": 0.0,

87Global Routing SDK 3.0 User Guide

Using REST API

 "turnAngleUnit": "deg",
 "compassDirection": "",
 "speedOfTravel": 49.9955,
 "speedOfTravelUnit": "mph",
 "roadType": "major road rural",
 "segmentDirection": "bidirectional",
 "startJunctionType": "",
 "endJunctionType": "Other",
 "isRoundabout": false,
 "isTollRoad": false,
 "geometry": {
 "type": "LineString",
 "crs": {
 "type": "name",
 "properties": {
 "name": "epsg:4326"
 }
 },
 "coordinates": [[…]]
 }
 },
 },
 "coordinates": [[…]]
 }
 }
]

Return segment data specifying a segmentID

http://www.precisely.com/webApp-context/services/databases/usroutedatabase/
segments/aa18eb33:1b7bbe.json?distanceUnits=mi

Response

[{
 "segmentID": "aa18eb33:1b7bbe",
 "primaryName": "VA-631",
 "primaryNameLanguage": "en",
 "alternateNames": [{
 "alternateName": "Lloyds Rd",
 "language": "en"
 }, {
 "alternateName": "VA-631",
 "language": "en"
 }
],
 "segmentLength": 4.954,
 "segmentLengthUnit": "mi",

88Global Routing SDK 3.0 User Guide

Using REST API

 "timeTaken": 5.9333,
 "timeUnit": "min",
 "turnAngle": 0.0,
 "turnAngleUnit": "deg",
 "compassDirection": "",
 "speedOfTravel": 49.9955,
 "speedOfTravelUnit": "mph",
 "roadType": "major road rural",
 "segmentDirection": "bidirectional",
 "startJunctionType": "",
 "endJunctionType": "Other",
 "isRoundabout": false,
 "isTollRoad": false
 }

Version specific error response

When you enter an invalid parameter value (for example, point missing) in a request, the error
response you get depends on the version entered by you. When the version is 1, you get value and
error whereas when the version is 2, the response only contains the error.

• Request when version is 1:

http://server:port/webApp-context/services/databases/usroutedatabase.json?version=1

• Response:

{
 "value": "Point cannot be empty.",
 "errors": [
{
 "errorCode": 4139,
 "userMessage": "Point cannot be empty."
 }
]
}

• Request when version is 2:

http://server:port/webApp-context/services/databases/usroutedatabase.json?version=2

• Response:

{"errors": [
{
 "errorCode": 4139,
 "userMessage": "Point cannot be empty."
}
]
}

89Global Routing SDK 3.0 User Guide

Using REST API

PersistentUpdates

Description

The PersistentUpdate service allows a user to override aspects of the network. The overrides
can be done on a per-road type, at a specific point or at a specific segment. The persistent update
is valid only for a specific data source and may not be valid after a data update.

Using persistent updates to make these types of modifications, you have the ability to:

• Exclude a point
• Exclude a segment
• Set the speed of a point, segment, or road type
• Change (increase or decrease) the speed of a point, segment, or road type by a value
• Change (increase or decrease) the speed of a point, segment, or road type by a percentage
• List persistent updates

Note: Since persistent updates are changes made on a system-wide basis for routing data
and all updates will persist, they should be used with caution. The response from the REST
service will be a success message. When a request contains invalid query parameters in the
GET URL or an invalid payload for POST, a cumulative error response will be returned in a
JSON array. The value node in the response JSON is deprecated. For error checking, only
the errors node should be utilized.

Version specific error response

When you enter an invalid parameter value (for example, multiple updates) in a request, the error
response you get depends on the version entered by you. When the version is 1, you get value and
error whereas when the version is 2, the response only contains the error.

• Request when version is 1:

http://server:port/webApp-context/services/databases/usroutedatabase.json?
velocity=15.912&velocityUnit=KPH&velocityAdjustment=34&velocityPercentage=56&version=1

• Response:

{
 "value": "One of either Velocity or SpeedIncrease or SpeedDecrease is
 expected.",
 "errors": [
 {
 "errorCode": 3733,

90Global Routing SDK 3.0 User Guide

Using REST API

 "userMessage": "One of either Velocity or SpeedIncrease or
SpeedDecrease is expected."
 }
]
}

• Request when version is 2:

http://server:port/webApp-context/services/databases/usroutedatabase.json
?velocity=15.912&velocityUnit=KPH&velocityAdjustment=34&velocityPercentage=56&version=2

• Response:

{
 "errors": [
 {
 "errorCode": 3733,
 "userMessage": "One of either Velocity or SpeedIncrease or
SpeedDecrease is expected."
 }
]
}

Types of Persistent Updates

See the following sections for information and examples of the persistent update request types:

Point Updates

HTTP POST URL Format

The following format is used for HTTP POST requests. HTTP POST is used to set a persistent update
to a point.

HTTP POST:/webApp-context/services/databases/
dbsource/persistentUpdates.json?point=x,y,srsName&
query_parameters

Where dbsource is the name of the database to update the route data. Use the database name
specified in the Database Resource tool.

91Global Routing SDK 3.0 User Guide

Using REST API

HTTP DELETE URL Format

The following format is used for HTTP DELETE requests. HTTP DELETE is used to remove a specific
persistent update to a point.

HTTP DELETE: /webApp-context/services/databases/
dbsource/persistentUpdates.json?point=x,y,srsName&
resetType=query_parameters

Where dbsource is the name of the database that contains the persistent update to remove. Use
the database name specified in the Database Resource tool.

Query Parameters

The HTTP POST operation takes the following query parameters.

DescriptionRequiredTypeParameter

Specifies whether to exclude the specified point from
all route calculations.The parameter’s existence in the
URL specifies whether to exclude, not the parameter
value.

noStringexclude

Specifies the speed update where you can define the
new speed of the point by specifying the new velocity.
The default unit is mph (miles per hour) unless you
specify the velocityUnit parameter.

noStringvelocity

Specifies the unit of speed for the velocity or
velocityAdjustment (miles per hour). For speed
updates, the velocity unit can have one of the following
values where mph is the default value:

• mph (miles per hour)
• kph (kilometers per hour).

noStringvelocityUnit

Specifies the speed update where you define a change
in the speed of the point by specifying the change in
velocity (unit and value). Speed values can be
increased (positive value) or decreases (negative
value). The default unit is mph (miles per hour) unless
you specify the velocityUnit parameter.

noStringvelocityAdjustment

92Global Routing SDK 3.0 User Guide

Using REST API

DescriptionRequiredTypeParameter

Specifies the speed update where you define an
increase in the speed of the point by specifying a
percentage to increase (positive value) or decrease
(negative value) the speed.

noIntegervelocityPercentage

Specifies the version of the PointUpdates REST
service. Valid values are 1 and 2.

NoStringversion

Reset Parameter

The HTTP DELETE operation takes the following query parameter.

DescriptionRequiredTypeParameter

Specifies whether to reset (undo) an update for a point.
Available options are:

• speed: Reset the speed update for a specific point.

• exclude: Reset the exclude for a specific point.

noStringresetType

Examples

Exclude a point (HTTP POST)

http://<server>:<port>/<webApp-context>/services/databases/<usroutedatabase>/persistentUpdates.json?point=-73.6,43.5,epsg:4326
&exclude=true

Remove a point exclude persistent update (HTTP DELETE)

http://<server>:<port>/<webApp-context>/services/databases/<usroutedatabase>/persistentUpdates.json?point=-73.6,43.5,
epsg:4326&resetType=exclude

93Global Routing SDK 3.0 User Guide

Using REST API

Segment Updates

HTTP POST URL Format

The following format is used for HTTP POST requests. HTTP POST is used to set a persistent update
to a segment.

HTTP POST: /webApp-context/services/databases/
dbsource/persistentUpdates/segments/
segment_id.json?query_parameters

Where dbsource is the name of the database to update the route data, and segment_id is the identifier
of the segment to update. Use the database name specified in the Database Resource tool.

HTTP GET URL Format

The following format is used for HTTP GET requests. HTTP GET is used to return a list of persistent
updates for segments.

HTTP GET:
/webApp-context/services/databases/dbsource/persistentUpdates/segments/segment_id.json

or

HTTP GET:
/webApp-context/services/databases/dbsource/persistentUpdates/segments.json?segments=segment_id

Where dbsource is the name of the database to return to persistent updates from, and segment_id
is the segment to return updates.

Note: The first format is used to return the persistent update for only one segment. The
second format is used to return either multiple segments or all segments. For multiple segments,
use a comma separated list of segment ids. For all segments, use an empty segments=
parameter. See examples below.

HTTP DELETE URL Format

The following format is used for HTTP DELETE requests. HTTP DELETE is used to remove a specific
persistent update to a segment.

HTTP DELETE: /webApp-context/services/databases/
dbsource/persistentUpdates/segments?mo=segment_id
&resetType=query_parameters

94Global Routing SDK 3.0 User Guide

Using REST API

Where dbsource is the name of the database, and segment_id is the identifier of the segment to
update that contains the persistent update to remove. Use the database name specified in the
Database Resource tool.

Query Parameters

The HTTP POST operation takes the following query parameters.

DescriptionRequiredTypeParameter

Specifies whether to exclude the specified segment from
all route calculations. The parameter’s existence in the
URL specifies whether to exclude, not the parameter
value.

noStringexclude

Specifies the speed update where you can define the
new speed of the segment by specifying the new
velocity. The default unit is mph (miles per hour) unless
you specify the velocityUnit parameter.

noStringvelocity

Specifies the unit of speed for the velocity or

velocityAdjustment. For speed updates, the velocity
unit can have one of the following values wheter the
mph is the default value:

• mph (miles per hour)
• kph (kilometers per hour)

noStringvelocityUnit

Specifies the speed update where you can define a
change in the speed of the segment by specifying the
change in velocity (unit and value). Speed values can
be increased (positive value) or decreases (negative
value). The default unit is mph (miles per hour) unless
you specify the velocityUnit parameter.

noStringvelocityAdjustment

Specifies the speed update where you define an
increase in the speed of the segment by specifying a
percentage to increase (positive value) or decrease
(negative value) the speed.

noIntegervelocityPercentage

Specifies the update where you can define the new road
type of the segment.

See the "roadType" list below.

noStringroadType

95Global Routing SDK 3.0 User Guide

Using REST API

DescriptionRequiredTypeParameter

Specifies the version of the SegmentUpdates REST
service. Valid values are 1 and 2.

NoStringversion

roadType

The roadType can be one of the following:

• access way
• back road
• connector
• ferry
• footpath
• limited access dense urban
• limited access rural
• limited access suburban
• limited access urban
• local road dense urban
• local road rural
• local road suburban
• local road urban
• major local road dense urban
• major local road rural
• major local road suburban
• major local road urban
• major road dense urban
• major road rural
• major road suburban
• major road urban
• minor local road dense Urban
• minor local road rural
• minor local road suburban
• minor local road urban
• normal road dense urban
• normal road rural
• normal road rural
• normal road urban
• primary highway dense urban
• primary highway rural
• primary highway suburban
• primary highway urban

96Global Routing SDK 3.0 User Guide

Using REST API

• ramp dense urban
• ramp limited access
• ramp major road
• ramp primary highway
• ramp rural
• ramp secondary highway
• ramp urban
• ramp suburban
• secondary highway dense urban
• secondary highway rural
• secondary highway suburban
• secondary highway urban

Reset Parameter

The HTTP DELETE operation takes the following query parameter.

DescriptionRequiredTypeParameter

Specifies whether to reset (undo) an update for a
segment. Available options are:

• speed: Reset the speed update for a specific
segment.

• exclude: Reset the exclude for a specific segment.

• roadType: Reset the road type for a specific
segment.

noStringresetType

Examples

Exclude a segment (HTTP POST)

http://<server>:<port>/<webApp-context>/services/databases/<US_NE>/persistentUpdates/segments/
9f5c5a5a:5174e2.json?exclude=true

Return a list of updates for a single segment (HTTP GET)

http://<server>:<port>/<webApp-context>/services/databases/<US_NE>/persistentUpdates/segments/
efed6c1:a59ad5.json?velocityUnit=kph

97Global Routing SDK 3.0 User Guide

Using REST API

Return a list of all segment updates for the US_NE routing database resource (HTTP GET)

http://<server>:<port>/<webApp-context>/services/databases/<US_NE>/persistentUpdates/
segments.json?segments=

Return a list of updates for the multiple segments (HTTP GET)

http://<server>:<port>/<webApp-context>/services/databases/<US_NE>/persistentUpdates/
segments.json?segments=27e20762:4718d9,7e3396fc:14c9c2c

Remove a segment speed persistent update (HTTP DELETE)

http://<server>:<port>/<webApp-context>/services/databases/<US_NE>/persistentUpdates/
segments?segmentID=9f5c5a5a:5174e2&resetType=speed

Road Type Updates

HTTP POST URL Format

The following format is used for HTTP POST requests. HTTP POST is used to set a persistent update
to a road type.

HTTP POST:
/webApp-context/services/databases/dbsource/persistentUpdates/roadTypes/roadtype
.json?query_parameters

Where dbsource is the name of the database to update the route data, and roadtype is the type of
road to update. Use the database name specified in the Database Resource tool.

HTTP GET URL Format

The following format is used for HTTP GET requests. HTTP GET is used to return a list of persistent
updates for road types.

HTTP GET:
/webApp-context/services/databases/dbsource/persistentUpdates/roadTypes/road_type.json

or

HTTP GET:
/webApp-context/services/databases/dbsource/persistentUpdates/roadTypes.json?roadTypes=road_type

Where dbsource is the name of the database to return to persistent updates from, and roadtype is
the type of road return updates.

98Global Routing SDK 3.0 User Guide

Using REST API

Note: The first format is used to return the persistent update for only one road type. The
second format is used to return either multiple road types or all road types. For multiple road
types, use a comma separated list of road types. For all road types, use an empty roadtypes=
parameter. See examples below.

HTTP DELETE URL Format

The following format is used for HTTP DELETE requests. HTTP DELETE is used to remove a specific
persistent update to a road type.

HTTP DELETE: /webApp-context/services/databases/
dbsource/persistentUpdates/roadTypes/roadtype

Where dbsource is the name of the database, and roadtype is the type of road that contains the
persistent update to remove. Use the database name specified in the Database Resource tool.

The roadtype can be one of the following for both the HTTP POST and HTTP DELETE:

• access way
• back road
• connector
• ferry
• footpath
• limited access dense urban
• limited access rural
• limited access suburban
• limited access urban
• local road dense urban
• local road rural
• local road suburban
• local road urban
• major local road dense urban
• major local road rural
• major local road suburban
• major local road urban
• major road dense urban
• major road rural
• major road suburban
• major road urban
• minor local road dense Urban
• minor local road rural
• minor local road suburban
• minor local road urban
• normal road dense urban

99Global Routing SDK 3.0 User Guide

Using REST API

• normal road rural
• normal road rural
• normal road urban
• primary highway dense urban
• primary highway rural
• primary highway suburban
• primary highway urban
• ramp dense urban
• ramp limited access
• ramp major road
• ramp primary highway
• ramp rural
• ramp secondary highway
• ramp urban
• ramp suburban
• secondary highway dense urban
• secondary highway rural
• secondary highway suburban
• secondary highway urban

Query Parameters

The HTTP POST operation takes the following query parameters.

DescriptionRequiredTypeParameter

This is a speed update where you can define the new
speed of the road type by specifying the new velocity.
The default unit is mph (miles per hour) unless you
specify the velocityUnit parameter.

noStringvelocity

This is a unit of speed for the velocity or

velocityAdjustment. For speed updates, the velocity
unit can have one of the following values where mph is
the default value:

• mph (miles per hour)
• kph (kilometers per hour)

noStringvelocityUnit

100Global Routing SDK 3.0 User Guide

Using REST API

DescriptionRequiredTypeParameter

Specifies the speed update where you can define a
change in the speed of the road type by specifying the
change in velocity (unit and value). Speed values can
be increased (positive value) or decreases (negative
value). The default unit is mph (miles per hour) unless
you specify the velocityUnit parameter.

noStringvelocityAdjustment

Specifies the speed update where you can define an
increase in the speed of the road type by specifying a
percentage to increase (positive value) or decrease
(negative value) the speed.

noIntegervelocityPercentage

Specifies the version of the RoadTypePointUpdates
REST service. Valid values are 1 and 2.

NoStringversion

Examples

Set a new velocity of a road type (HTTP POST)

http://<server>:<port>/<webApp-context>/services/databases/<usroutedatabase>/persistentUpdates/roadTypes/
ferry.json?velocity=5&velocityUnits=mph

Return a list of updates for the ferry road type (HTTP GET)

http://<server>:<port>/<webApp-context>/services/databases/<US_NE>/persistentUpdates/roadTypes/
ferry.json?velocityUnit=kph

Return a list of all road type updates for the US_NE routing database resource (HTTP GET)

http://<server>:<port>/<webApp-context>/services/databases/<US_NE>/persistentUpdates/
roadTypes.json?roadTypes=

Return a list of updates for the ferry, connector, and normal road urban road types (HTTP GET)

http://<server>:<port>/<webApp-context>/services/databases/<US_NE>/persistentUpdates/
roadTypes.json?roadTypes=ferry,connector,normal road urban

Remove a road type persistent update (HTTP DELETE)

http://<server>:<port>/<webApp-context>/services/databases/<US_NE>/persistentUpdates/roadTypes/back
 road

101Global Routing SDK 3.0 User Guide

Using REST API

Remove All Updates

HTTP DELETE URL Format

The following format is used for HTTP DELETE requests. HTTP DELETE is used to remove all
persistent update for a specified database.

HTTP DELETE: /webApp-context/services/databases/
dbsource/persistentUpdates

Where dbsource is the name of the database that contains the persistent updates to remove. Use
the database name specified in the Database Resource tool.

Example

Removes all persistent updates for the US_NE routing database resource.

http://<server>:<port>/<webApp-context>/services/databases/<US_NE>/persistentUpdates

Get All Updates

HTTP GET URL Format

The following format is used for HTTP GET requests. This HTTP GET operation is used to list all
the persistent updates for a specified routing database resource.

HTTP GET: /webApp-context/services/databases/
dbsource/persistentUpdates.json

Where dbsource is the name of the database that contains the persistent updates to remove. Use
the database name specified in the Database Resource tool.

Query Parameters

This operation takes the following query parameter:

102Global Routing SDK 3.0 User Guide

Using REST API

DescriptionRequiredTypeParameter

Specifies that the updates saved in the server will be
returned in this specified unit. If this parameter is not
mentioned, response will be returned in default unit. For
speed updates, the velocity unit can have one of the
following values where mph is the default value:

• mph (miles per hour)
• kph (kilometers per hour)
• mtps (meters per second)
• and mtpm (meters per minute)

noStringvelocityUnit

Specifies the version of the RoadTypePointUpdates
REST service. Valid values are 1 and 2.

NoStringversion

Example

Return a list of updates for the US_NE routing database resource.

http://<server>:<port>/<webApp-context>/services/databases/<US_NE>/persistentUpdates.json

Response

{
 "roadTypeUpdates":
 [{
 "roadType": "major road dense urban",
 "speed": {
 "velocity": 90,
 "velocityUnit": "MPH"
 }
 }
],
 "segmentUpdates":
 [{
 "exclude": true,
 "roadType": "major road dense urban",
 "segmentID": "c75994cc:12d916",
 "speed": {
 "velocity": 65,
 "velocityUnit": "MPH"
 }
 }, {
 "exclude": true,
 "roadType": "major road dense urban",
 "segmentID": "7ac5401f:6b1bf7",
 "speed": {

103Global Routing SDK 3.0 User Guide

Using REST API

 "velocity": 65,
 "velocityUnit": "MPH"
 }
 }
]
}

When velocity unit parameter is specified in kph.

http://<server>:<port>/<webApp-context>/services/databases/<database_name>/persistentUpdates.json?velocityUnit=kph

Response

{
 "roadTypeUpdates": [{
 "roadType": "major road dense urban",
 "speed": {
 "velocity": 145,
 "velocityUnit": "KPH"
 }
 }
]
}

Transient Updates

Transient Updates

It allows you to set transient updates (point, segment, road type updates) for each request. For
instance, you can request that the server attempt to avoid all of the major road types. Each request
can contain one or more updates. For speed updates, positive speed value is a speed increase and
negative speed value is a speed decrease.

The Transient Updates service allows a user to override aspects of the network. The overrides can
be done on a per-road type, at a specific point or a specific segment. The Transient Update is valid
only for a specific data source and may not be valid after a data update.

Using the Transient Updates, you can perform the following:

• Exclude a point
• Exclude a segment
• Set the speed of a point, segment, or road type
• Change (increase or decrease) the speed of a point, segment, or road type by a value
• Change (increase or decrease) the speed of a point, segment, or road type by a percentage

104Global Routing SDK 3.0 User Guide

Using REST API

The following is a description of the transient update types.

point

Point updates are changes applied to a corresponding point (X, Y). For a particular point, you can
exclude the point, set the speed of the point, or change (increase or decrease) the speed of the point
by a value or percentage. Use one of the following types of updates:

DescriptionPoint Update Type

Specifies the speed update where you can replace the speed of the point by specifying
a percentage to increase (positive value) or decrease (negative value) the speed.

percentage

Specifies the speed update where you can define the new speed of the point by specifying
the new velocity. For speed updates, the velocity can have one of the following values:

• kph (kilometers per hour)
• mph (miles per hour)
• mtps (meters per second)
• mtpm (meters per minute)

speed

Specifies a speed update where you can define a change in the speed of the point by
specifying the change in the value.The speed velocity can be increased (positive value)
or decreased (negative value). For speed updates, the velocity can have one of the
following values:

• kph (kilometers per hour)
• mph (miles per hour)
• mtps (meters per second)
• mtpm (meters per minute)

speedAdjustment

Specifies a value to exclude the specified point from the route calculation. To exclude
a point you need to specify the point and include the exclude parameter defined as Y.
Valid values are Y (yes) and N (no). This is a String update type.

exclude

SegmentID

Specifies the segment updates applied to a corresponding segment ID. For a particular segment,
you can exclude the segment, set the speed of the segment, or change (increase or decrease) the
speed of the segment by a value or percentage. Use one of the following types of updates:

DescriptionSegmentID Update Type

Specifies a speed update where you can define an increase in the speed of the
segmentID by specifying a percentage to increase (positive value) or decrease (negative
value) the speed.

percentage

105Global Routing SDK 3.0 User Guide

Using REST API

DescriptionSegmentID Update Type

Specifies a speed update where you define the new speed of the segmentID by
specifying the new velocity. For speed updates, the velocity can have one of the following
values:

• kph (kilometers per hour)
• mph (miles per hour)
• mtps meters per second)
• mtpm (meters per minute)

speed

Specifies the speed update where you can define a change in the speed of the
segmentID by specifying the change in velocity. Speed values can be increased (positive
value) or decreased (negative value). For speed updates, the velocity can have one of
the following values:

• kph (kilometers per hour)
• mph (miles per hour)
• mtps (meters per second)
• mtpm (meters per minute)

speedAdjustment

Specifies the value to exclude the specified segmentID from the route calculation. To
exclude a segmentID you need to specify the segmentID and include the exclude
parameter defined as Y. Valid values are Y (yes) and N (no). This is a String update
type.

exclude

Specifies a value to change the road type for the segment for the route calculation.

See the "roadType" list below.

roadType

roadType

Road type updates are changes applied to a corresponding road type. For a particular road type,
you can set the speed of the roadtype or change (increase or decrease) the speed of the road type
by a value or percentage. Use one of the following types of updates:

DesciptionroadType Update Type

Specifies the speed update where you can define an increase in the speed of the road
type by specifying a percentage to increase (positive value) or decrease (negative value)
the speed.

percentage

106Global Routing SDK 3.0 User Guide

Using REST API

DesciptionroadType Update Type

Specifies the speed update where you can define the new speed of the road type by
specifying the new velocity. For speed updates, the velocity unit can have one of the
following values:

• kph (kilometers per hour)
• mph (miles per hour)
• mtps (meters per second)
• mtpm (meters per minute)

speed

Specifies the speed update where you can define a change in the speed of the road
type by specifying the change in velocity. Speed values can be increased (positive value)
or decreased (negative value). For speed updates, the velocity can have one of the
following values:

• kph (kilometers per hour)
• mph (miles per hour)
• mtps (meters per second)
• mtpm (meters per minute)

speedAdjustment

roadType

Specifies a value to change the road type for the segment for the route calculation. roadType can
be one of the following:

• access way
• back road
• connector
• ferry
• footpath
• limited access dense urban
• limited access rural
• limited access suburban
• limited access urban
• local road dense urban
• local road rural
• local road suburban
• local road urban
• major local road dense urban
• major local road rural
• major local road suburban
• major local road urban
• major road dense urban

107Global Routing SDK 3.0 User Guide

Using REST API

• major road rural
• major road suburban
• major road urban
• minor local road dense Urban
• minor local road rural
• minor local road suburban
• minor local road urban
• normal road dense urban
• normal road rural
• normal road rural
• normal road urban
• primary highway dense urban
• primary highway rural
• primary highway suburban
• primary highway urban
• ramp dense urban
• ramp limited access
• ramp major road
• ramp primary highway
• ramp rural
• ramp secondary highway
• ramp urban
• ramp suburban
• secondary highway dense urban
• secondary highway rural
• secondary highway suburban
• secondary highway urban

Code Examples

Example of transient update HTTP POST payload

{
 "transientUpdates": [{
 "segmentID": "specify a segment id",
 "updates": [{
 "exclude": "Y"
 }, {
 "roadType": "a road type"
 }, {
 "percentage": 26.0
 }, {
 "speed": {
 "velocity": 25,

108Global Routing SDK 3.0 User Guide

Using REST API

 "velocityUnit": "kph"
 }
 }, {
 "percentage": -13.5
 }, {
 "speedAdjustment": {
 "velocity": 5,
 "velocityUnit": "kph"
 }
 }
]
 }, {
 "point": "specify a geojson point",
 "updates": [{
 "exclude": "Y"
 }, {
 "percentage": 26.0
 }, {
 "speed": {
 "velocity": 25,
 "velocityUnit": "kph"
 }
 }, {
 "percentage": -13.5
 }, {
 "speedAdjustment": {
 "velocity": 5,
 "velocityUnit": "kph"
 }
 }
]
 }, {
 "roadType": "specify a road type",
 "updates": [{
 "percentage": 26.0
 }, {
 "speed": {
 "velocity": 25,
 "velocityUnit": "kph"
 }
 }, {
 "percentage": -13.5
 }, {
 "speedAdjustment": {
 "velocity": 5,
 "velocityUnit": "kph"
 }
 }
]
 }
]
}

109Global Routing SDK 3.0 User Guide

Using REST API

Example of geojson point

"point": {
 "type": "Point",
 "crs": {
 "type": "name",
 "properties": {
 "name": "epsg:4326"
 }
 },
 "coordinates":
 [-73.979102, 40.785193]
}

Version specific error response

When you enter an invalid parameter value (for example, json missing) in a request, the error response
you get depends on the version entered by you. When the version is 1, you get value and error
whereas when the version is 2, the response only contains the error.

• Request when version is 1:

http://server:port/webApp-context/services/databases/usroutedatabase.json?
startPoint=-73.972033%2C40.794928%2Cepsg%3A4326&distanceUnit=mi
&endPoint=-73.985617%2C40.747%2Cepsg%3A4326&q=route&version=1

• Response:

{
 "value": "Invalid POST payload specified: JSON is not valid.",
 "errors": [
{
 "errorCode": 4182,
 "userMessage": "Invalid POST payload specified: JSON is not valid."

 }
]
}

• Request when version is 2:

• http://server:port/webApp-context/services/databases/usroutedatabase.json?
startPoint=-73.972033%2C40.794928%2Cepsg%3A4326&distanceUnit=mi
&endPoint=-73.985617%2C40.747%2Cepsg%3A4326&q=route&version=2

• Response:

{
"errors": [
{

110Global Routing SDK 3.0 User Guide

Using REST API

 "errorCode": 4182,
 "userMessage": "Invalid POST payload specified: JSON is not valid."
}
]
}

GetCapabilities

Description

The GetCapabilities service enables user to get metadata about the routing engine deployed.
This metadata allows users to explore a service and its capabilities, therefore optimizing their
experience using the routing services.

This is available as REST service only.

HTTP GET URL Format

http://<server>:<port>/webApp-context/services/v1/capabilities.json

Query Parameters

DescriptionRequiredParameter

Placeholder (not functional)OptionalacceptVersions

Comma-separated unordered list of zero or more names of
sections of service metadata document to be returned in the
service metadata document. Section values are
case-insensitive. Accepted section values are
ServiceIdentification, ServiceProvider, operationsMetadata
and databases.

Optional

When omitted,
returns
information
about all
sections.

sections

Response

The response will be in line with OGC GetCapabilities. It is in JSON format and has these sections:

• serviceIdentification
• serviceProvider
• operationsMetadata

111Global Routing SDK 3.0 User Guide

Using REST API

• databases

serviceIdentification

This section contains basic metadata about this specific server. Its content will look as follows:

 "serviceIdentification":
 {
 "title": "Routing Service",
 "abstract": "Routing service maintained by Precisely",
 "keywords":
 {
 "keyword":
 [
]
 },
 "serviceType": "Routing",
 "serviceTypeVersion": "v1",
 "fees": "none",
 "accessConstraints": "none"
 }

This information will be same as what is available in the getCapabilities.json configuration
file.

This file is present in SpectrumDirectory\server\modules\routing. The server needs to
be restarted for any change made to the file to have an effect. The administrator determines which
information the user should get and can modify or delete corresponding entries in the JSON file. All
fields in the JSON file are optional.

serviceProvider

This section contains metadata about the organization operating this server. Its content will look like
as follows:

"serviceProvider":
 {
 "providerName": "Routing Service Provider",
 "providerSite":
 {
 "href": "http://www.yourcompany.com/",
 "type": "simple"
 },
 "serviceContact":
 {
 "contactInfo":
 {
 "address":
 {
 "administrativeArea": "Province",
 "city": "City",
 "country": "Country",
 "deliveryPoint": "Mail Delivery Location",

112Global Routing SDK 3.0 User Guide

Using REST API

"electronicMailaddress":"mailto://support@yourcompany.com",
 "postalCode": "PostCode"
 },
 "contactInstructions": "Contact Instructions",
 "hoursOfservice": "24 Hours",
 "phone":
 {
 "facsimile": "1.800.000.0000",
 "voice": "1.800.000.0000"
 }
 },
 "individualName": "Contact Person",
 "positionName": "Contact Person's Title",
 "role": "Contact Person's Role"
 }
 }

This will also be configured using the getCapabilities.json configuration file as described
above.

operationsMetadata

This section contains metadata about the operations implemented by this server, including the URLs
for operation requests. These fixed operations or services are listed in this section:

• GetRoute: point to point service
• GetRouteCostMatrix: matrix of points processing service
• GetTravelBoundary : generates a drive or walk time or distance boundary
• DescribeDatasets: gives information about the datasets configured
• DescribeDatabases: gives information about all the databases configured
• GetSegmentDataForPoint: returns segment information for a point
• GetSegmentDataForSegment: returns segment information for a segment ID
• ListPersistentUpdates: lists down all the persistent updates that exists in the server
• DeletePersistentUpdates: deletes all the persistent updates that exists in the server
• SetPersistentUpdatesAtPoint: saves persistent update for the specified point in the server
• SetPersistentUpdatesForSegment: saves persistent update for the specified segment ID in the

server
• SetPersistentUpdatesForRoadType: saves persistent update for the specified road type in the

server

Its content will look like as follows:

{"operationsMetadata": [{
 "name": "GetRoute",
 "DCP": {
 "HTTP": {
 "GET":
"<schema>://<server>:<port>/rest/Spatial/erm/databases/<DB_NAME>.json?q=route&version=2",

113Global Routing SDK 3.0 User Guide

Using REST API

 "POST":
"<schema>://<server>:<port>/rest/Spatial/erm/databases/<DB_NAME>.json?q=route&version=2"

 }
 },
 "parameter": {
 "name": "OutputFormat",
 "value": "text/json"
 }
 },

 {
 "name": "GetRouteCostMatrix",
 "DCP": {
 "HTTP": {
 "GET":
"<schema>://<server>:<port>/rest/Spatial/erm/databases/<DB_NAME>.json?q=routeCostMatrix&version=2",

 "POST":
"<schema>://<server>:<port>/rest/Spatial/erm/databases/<DB_NAME>.json?q=routeCostMatrix&version=2"

 }
 },"parameter": {
 "name": "OutputFormat",
 "value": "text/json"}

 },

 {

 "name": "GetTravelBoundary",
 "DCP": {
 "HTTP": {
 "GET":
"<schema>://<server>:<port>/rest/Spatial/erm/databases/<DB_NAME>.json?q=travelBoundary&version=2",

 "POST":
"<schema>://<server>:<port>/rest/Spatial/erm/databases/<DB_NAME>.json?q=travelBoundary&version=2"

 }
 },
 "parameter": {
 "name": "OutputFormat",
 "value": "text/json"
 }
 },

 {
 "name": "DescribeDatasets",
 "DCP": {
 "HTTP": {
 "GET": "<schema>://<server>:<port>/rest/Spatial/erm/v1/datasets.json"

114Global Routing SDK 3.0 User Guide

Using REST API

 }
 },
 "parameter": {
 "name": "OutputFormat",
 "value": "text/json"
 }
 },

 {
 "name": "DescribeDatabases",
 "DCP": {
 "HTTP": {
 "GET": "<schema>://<server>:<port>/rest/Spatial/erm/v1/databases.json"

 }
 },
 "parameter": {
 "name": "OutputFormat",
 "value": "text/json"
 }
 },

 {
 "name": "GetSegmentDataForPoint",
 "DCP": {
 "HTTP": {
 "GET":
"<schema>://<server>:<port>/rest/Spatial/erm/databases/<DB_NAME>/segments.json"

 }
 },
 "parameter": {
 "name": "OutputFormat",
 "value": "text/json"
 }
 },

 {
 "name": "GetSegmentDataForSegment",
 "DCP": {
 "HTTP": {
 "GET":
"<schema>://<server>:<port>/rest/Spatial/erm/databases/<DB_NAME>/segments/<segmentID>.json"

 }
 },
 "parameter": {
 "name": "OutputFormat",
 "value": "text/json"
 }
 },

115Global Routing SDK 3.0 User Guide

Using REST API

 {
 "name": "ListPersistentUpdates",
 "DCP": {
 "HTTP": {
 "GET":
"<schema>://<server>:<port>/rest/Spatial/erm/databases/<DB_NAME>/persistentUpdates.json"

 }
 },
 "parameter": {
 "name": "OutputFormat",
 "value": "text/json"
 }
 },

 {
 "name": "DeletePersistentUpdates",
 "DCP": {
 "HTTP": {
 "DELETE":
"<schema>://<server>:<port>/rest/Spatial/erm/databases/<DB_NAME>/persistentUpdates"

 }
 },
 "parameter": {
 "name": "OutputFormat",
 "value": "text/json"
 }
 },

 {
 "name": "SetPersistentUpdatesAtPoint",
 "DCP": {
 "HTTP": {
 "POST":
"<schema>://<server>:<port>/rest/Spatial/erm/databases/<DB_NAME>/persistentUpdates.jason"

 }
 },
 "parameter": {
 "name": "OutputFormat",
 "value": "text/json"
 }
 },

 {
 "name": "SetPersistentUpdatesForSegment",
 "DCP": {
 "HTTP": {
 "POST":
"<schema>://<server>:<port>/rest/Spatial/erm/databases/<DB_NAME>/persistentUpdates/segments/<segmentID>.json"

116Global Routing SDK 3.0 User Guide

Using REST API

 }
 },
 "parameter": {
 "name": "OutputFormat",
 "value": "text/json"
 }
 },

 {
 "name": "SetPersistentUpdatesForRoadType",
 "DCP": {
 "HTTP": {
 "POST":
"<schema>://<server>:<port>/rest/Spatial/erm/databases/<DB_NAME>/persistentUpdates/roadTypes/<roadtype>.json"

 }
 },
 "parameter": {
 "name": "OutputFormat",
 "value": "text/json"
 }
 }

]
}

databases

This section will contain the list of names of databases which are configured in the server.

For example:

{
 "databases":
 [
 "US_NE",
 "US"
]}

If no database is configured on the server, this is returned:

{
 "databases":[
]
}

117Global Routing SDK 3.0 User Guide

Using REST API

DescribeDatasets

Description

The DescribeDatasets service enables user to get information metadata about the datasets
corresponding to the routing databases added to the GR SDK server.The response will be analogous
with the metadata information present in the dataset path.

This feature is available as REST service only.

HTTP GET URL Format (All Datasets)

http://<server>:<port>/webApp-context/services/v1/datasets.json

HTTP GET URL Format(Single Dataset)

http://<server>:<port>/webApp-context/services/v1/datasets/<dataset_ID>.json

The dataset_ID is the ‘id’ corresponding to the elements in the ‘dataSets’ array from the
DescribeDatabases service.

Response

The response of this service is a JSON array.

For all datasets, the length of the JSON array is same as the total number of the dataset paths (with
metadata available) added against the databases configured in Management Console. If a dataset
path does not have metadata available, that entry will be ignored.

For a single dataset, the length of the JSON array will be one if and only if the metadata is available
in the dataset path. Otherwise, an empty JSON array will be returned.

Example

Two routing databases have been added in the GR SDK. The name and dataset paths of the
databases are as follows:

1. US_NE: E:\\db\\ERM-US\\2014.09\\driving\\northeast
2. US: E:\\db\\ERM-US\\2014.09\\driving\\midwest and

E:\\db\\ERM-US\\2014.09\\driving\\south

Sample Request (All Datasets):

http://<server>:<port>/webApp-context/services/v1/datasets.json

118Global Routing SDK 3.0 User Guide

Using REST API

Response:

{
 "dataSets": [{
 "component": "routing",
 "description": "USA Test dataset",
 "ext": {
 "bbox": [68.291015625, 7.9721977144, 97.55859375, 35.4606699515],

 "crs": "epsg:4326",
 "cvr": true,
 "historicTrafficTimeBuckets": {
 "amPeak": {
 "lowerBound": 700,
 "upperBound": 1000
 },
 "nightTime": {
 "lowerBound": 2200,
 "upperBound": 400
 },
 "offPeak": {
 "lowerBound": 1000,
 "upperBound": 1600
 },
 "pmPeak": {
 "lowerBound": 1600,
 "upperBound": 1900
 }
 },
 "locale": "EN",
 "type": "driving"
 },
 "id": "US dataset",
 "name": "USA",
 "product": "Spatial",
 "vintage": "September 2015"
 }]
}

Sample Request (Single Dataset):

http://<server>:<port>/webApp-context/services/v1/datasets/US%20dataset.json

Response:

{
 "dataSets": [{
 "component": "routing",
 "description": "USA Test dataset",
 "ext": {
 "bbox": [68.291015625, 7.9721977144, 97.55859375, 35.4606699515],

119Global Routing SDK 3.0 User Guide

Using REST API

 "crs": "epsg:4326",
 "cvr": true,
 "historicTrafficTimeBuckets": {
 "amPeak": {
 "lowerBound": 700,
 "upperBound": 1000
 },
 "nightTime": {
 "lowerBound": 2200,
 "upperBound": 400
 },
 "offPeak": {
 "lowerBound": 1000,
 "upperBound": 1600
 },
 "pmPeak": {
 "lowerBound": 1600,
 "upperBound": 1900
 }
 },
 "locale": "EN",
 "type": "driving"
 },
 "id": "US dataset",
 "name": "USA",
 "product": "Spatial",
 "vintage": "September 2015"
 }]
}

DescribeDatabases

Description

The DescribeDatabases operation returns name of all the database resources that are configured
in the system and can be used in a request. This operation returns a list containing the names of all
databases in the system and an array containing the datasets for each database.

HTTP GET URL Format (All Databases)

The format below is used for HTTP GET requests. If no data resource exists on the server, an empty
list is returned.

http://<server>:<port>/webApp-context/services/v1/databases.json

120Global Routing SDK 3.0 User Guide

Using REST API

Example (All Databases)

Request:

http://<server>:<port>/webApp-context/services/v1/databases.json

Response:

{
 "databases":
 [
 {
 "dataSets":
 [
 "US_Central"
],
 "name": "US_CN"
 },
 {
 "dataSets":
 [
 "US_NorthEast"
],
 "name": "US_NE"
 },
 {
 "dataSets":
 [
 "US_Central",
 "US_Midwest",
 "US_NorthEast",
 "US_Pacific",
 "US_South"
],
 "name": "US"
 }
]
}

HTTP GET URL Format (Single Database)

The format below is used for HTTP GET requests.This request is used if to get the dataset information
for a particular data resource. If no data resource with the specified name exists on the server, an
exception is returned.

http://<server>:<port>/webApp-context/services/v1/<database_name>.json

121Global Routing SDK 3.0 User Guide

Using REST API

Example (Single Database)
Request:

http://<server>:<port>/webApp-context/services/v1/databases/US.json

Response:

{
 "databases":
 [
 {
 "dataSets":
 [
 "US_Central",
 "US_Midwest",
 "US_NorthEast",
 "US_Pacific",
 "US_South"
],
 "name": "US"
 }
]
}

122Global Routing SDK 3.0 User Guide

Using REST API

5 - Closest Arc Snapping
While calculating route, boundary, or matrix for a given segment, if the start
or end points lie off the road network, the ERM attempts to find the closest
segment near the start and end points. In this extended calculation, the
ERM considers the geometrically closest segments. In this approach, if the
closest segment is restricted for routing, an error is received -- “Path could
not be calculated” in case of the route. The same error is received when
the matrix and circular boundary is calculated according to
maxOffRoadDistance for the polygon.

The following solution attempts to improve the find closest segment snapping
logic that ignores the closest restricted arcs and provides you the
next-best-possible route.

Note: This change is applicable and effective only in scenarios where
the closest arcs near start or end points are restricted.

In this section

What is a Restricted Arc...124
Impact on Boundary Calculations..125
Impact on Route and Matrix Calculations ...126

What is a Restricted Arc

A restricted arc is not traversable which means; you cannot find a route through a restricted arc. In
case of closed premises, an arc which connects the premises with the outside network may have a
gated entry and hence is restricted for driving.

For example – The start point in the following image lies close to a segment which is restricted for
traveling.

Table 1: Comparing Boundaries

AfterBefore

124Global Routing SDK 3.0 User Guide

Closest Arc Snapping

Impact on Boundary Calculations

In some cases, user finds circular boundaries due to the presence of a restricted arc near the points.

During boundary calculation, if the closest road segment is restricted, then the boundary is calculated
using the maxOffRoadDistance parameter. With the new improvements to the algorithm, if the road
segment closest to the point is restricted, then that segment is avoided, and the boundary is calculated
with open segments.

The following snapshots depict the situation before and after the snapping logic implementation.

Point: -77.523203, 38.803707 Cost: 5 minutes

Table 2: Comparing Boundaries

AfterBefore

Point: -3.0681250, 55.8612868 Cost: 5 minutes

125Global Routing SDK 3.0 User Guide

Closest Arc Snapping

Table 3: Comparing Boundaries

AfterBefore

Impact on Route and Matrix Calculations

In some cases, the user receives an error - “Path could not be calculated.” This error is caused by
restricted closest arcs. The improved snapping logic helps in reducing such errors by avoiding
restricted arcs.

The improved logic takes the closest arc into consideration and attempts to ignore such arcs thus
reducing errors. For example, if there is any restricted road near the start or end point, the new
snapping logic ignores the restricted path and finds another way to calculate the route matrix.

With the reduced errors caused by restricted arcs, the performance of route and matrix calculations
increases as the routing algorithm has less number of path complexities to handle.

startpoint: -73.5661, 45.5077 endPoint: -73.576048, 45.496936

126Global Routing SDK 3.0 User Guide

Closest Arc Snapping

Table 4: Comparing Boundaries

AfterBefore

“Path could not be calculated” error

startPoint: -80.146276, 26.707754 endPoint: -81.483591, 28.583825

Table 5: Comparing Boundaries

AfterBefore

“Path could not be calculated” error

127Global Routing SDK 3.0 User Guide

Closest Arc Snapping

6 - Local Roads Load
Factor
The localRoadsLoadFactor is a parameter that allows you to control the
number of roads you can include while calculating a route or matrix. It
assumes values ranging between 1 and 3.

In this section

Why is it Needed?..129
Impact on Routes and Matrices...130
Impact on Performance ...131

Why is it Needed?

The localRoadsLoadFactor addresses a rare scenario where the routing engine could have calculated
a shorter route. This could happen due to the current functionality of the routing engine that loads
minor roads in memory only at the time of the calculation.

In such cases, you can use the localRoadsLoadFactor parameter to optimize the results by entering
a higher value for this parameter and load more minor roads for calculation.

The number of minor roads loaded in memory is directly proportional to the value of
localRoadsLoadFactor parameter. This means that a bigger value (3, for example) signifies more
minor roads will be loaded in memory which may result in a more optimized route.

Note: Despite using the localRoadsLoadFactor with higher value, you may or may not achieve
a better route or matrix. This parameter only loads more minor roads and therefore increases
the probability of a better calculation.

Table 6: Impact of smaller and bigger values

When localRoadsLoadFactor is 3When localRoadsLoadFactor is 1

Note: As the comparison above depicts the density of minor roads loaded in memory based
on the respective values of localRoadsLoadFactor.

129Global Routing SDK 3.0 User Guide

Local Roads Load Factor

Impact on Routes and Matrices

For Route and Matrix calculations, minor roads are loaded in memory, but in some scenarios, due
to a smaller number of minor roads loaded in memory, the route calculation may result in longer
routes. If the user feels that the route returned from the engine is not optimized, they can use the
localRoadsLoadFactor to load more minor roads in memory to improve/optimize the route or matrix
results.

The following example depicts two routes: one with a lower value and other with the highest value
of the parameter:

Note: The brown route was calculated with localRoadsLoadFactor=1 while the orange route
with localRoadsLoadFactor=3 is much shorter.

130Global Routing SDK 3.0 User Guide

Local Roads Load Factor

Impact on Performance

The use of this factor may impact the performance of the engine, so it is highly recommended to use
only in cases where it is indispensable. The general observation is that there can be a performance
degradation of about 50-60 percent on an average in the throughput.

131Global Routing SDK 3.0 User Guide

Local Roads Load Factor

7 - Sample Applications
Included with the GR SDK are three Java API sample applications
demonstrating the three routing capabilities (GetRoute, GetTravelBoundary,
and GetRouteCostMatrix), and one REST API sample application
demonstrating the GetRoute capability. These samples all have executable
files, as well as sample data included (Washington DC dataset). Refer the
readme.txt file for detailed instructions on how to setup and run the samples.
The readme.txt is located at: install_dir\samples.

The source for the samples are located at:
install_dir\samples\src\com\pb\routing\gra\samples\.

In this section

8 - Appendix

In this section

Java API Road Type Enumeration..134
REST API Road Type Enumeration..135
Java API Language Enumeration...136
REST API Language Enumeration...137

Java API Road Type Enumeration

When defining roadtypes for ambient speeds, the following road type enumerations can be used:

• RoadType.ACCESS_WAY
• RoadType.BACKROAD
• RoadType.CONNECTOR
• RoadType.FERRY
• RoadType.FOOTPATH
• RoadType.LIMITED_ACCESS_DENSE_URBAN
• RoadType.LIMITED_ACCESS_RURAL
• RoadType.LIMITED_ACCESS_SUBURBAN
• RoadType.LIMITED_ACCESS_URBAN
• RoadType.LOCAL_ROAD_DENSE_URBAN
• RoadType.LOCAL_ROAD_RURAL
• RoadType.LOCAL_ROAD_SUBURBAN
• RoadType.LOCAL_ROAD_URBAN
• RoadType.MAJOR_LOCAL_ROAD_DENSE_URBAN
• RoadType.MAJOR_LOCAL_ROAD_RURAL
• RoadType.MAJOR_LOCAL_ROAD_SUBURBAN
• RoadType.MAJOR_LOCAL_ROAD_URBAN
• RoadType.MAJOR_ROAD_DENSE_URBAN
• RoadType.MAJOR_ROAD_RURAL
• RoadType.MAJOR_ROAD_SUBURBAN
• RoadType.MAJOR_ROAD_URBAN
• RoadType.MINOR_LOCAL_ROAD_DENSE_URBAN
• RoadType.MINOR_LOCAL_ROAD_RURAL
• RoadType.MINOR_LOCAL_ROAD_SUBURBAN
• RoadType.MINOR_LOCAL_ROAD_URBAN
• RoadType.NORMAL_ROAD_DENSE_URBAN
• RoadType.NORMAL_ROAD_RURAL
• RoadType.NORMAL_ROAD_URBAN
• RoadType.PRIMARY_HIGHWAY_DENSE_URBAN
• RoadType.PRIMARY_HIGHWAY_RURAL
• RoadType.PRIMARY_HIGHWAY_SUBURBAN
• RoadType.PRIMARY_HIGHWAY_URBAN
• RoadType.RAMP_DENSE_URBAN
• RoadType.RAMP_LIMITED_ACCESS

134Global Routing SDK 3.0 User Guide

Appendix

• RoadType.RAMP_MAJOR_ROAD
• RoadType.RAMP_PRIMARY_HIGHWAY
• RoadType.RAMP_RURAL
• RoadType.RAMP_SECONDARY_HIGHWAY
• RoadType.RAMP_URBAN
• RoadType.RAMP_SUBURBAN
• RoadType.SECONDARY_HIGHWAY_DENSE_URBAN
• RoadType.SECONDARY_HIGHWAY_RURAL
• RoadType.SECONDARY_HIGHWAY_SUBURBAN
• RoadType.SECONDARY_HIGHWAY_URBAN

REST API Road Type Enumeration

When defining roadtypes for ambient speeds, the following road type enumerations can be used:

• access way
• back road
• connector
• ferry
• footpath
• limited access dense urban
• limited access rural
• limited access suburban
• limited access urban
• local road dense urban
• local road rural
• local road suburban
• local road urban
• major local road dense urban
• major local road rural
• major local road suburban
• major local road urban
• major road dense urban
• major road rural
• major road suburban
• major road urban
• minor local road dense Urban
• minor local road rural
• minor local road suburban

135Global Routing SDK 3.0 User Guide

Appendix

• minor local road urban
• normal road dense urban
• normal road rural
• normal road rural
• normal road urban
• primary highway dense urban
• primary highway rural
• primary highway suburban
• primary highway urban
• ramp dense urban
• ramp limited access
• ramp major road
• ramp primary highway
• ramp rural
• ramp secondary highway
• ramp urban
• ramp suburban
• secondary highway dense urban
• secondary highway rural
• secondary highway suburban
• secondary highway urban

Java API Language Enumeration

When defining language for returning routing results, the following language enumerations can be
used:

• Language.ALBANIAN
• Language.CHINESE
• Language.TAIWANESE
• Language.CROATIAN
• Language.CZECH
• Language.DANISH
• Language.DUTCH
• Language.ENGLISH
• Language.ENGLISH_US
• Language.ESTONIAN
• Language.FINNISH
• Language.FRENCH

136Global Routing SDK 3.0 User Guide

Appendix

• Language.GERMAN
• Language.HUNGARIAN
• Language.ITALIAN
• Language.JAPANESE
• Language.LATVIAN
• Language.LITHUANIAN
• Language.NORWEGIAN
• Language.PORTUGUESE
• Language.ROMANIAN
• Language.SLOVAK
• Language.SLOVENIAN
• Language.SPANISH
• Language.SWEDISH
• Language.RUSSIAN
• Language.TURKISH

REST API Language Enumeration

When defining language for returning routing results, the following language enumerations (ISO
language code) can be used:

• sq
• zh_CN
• zh_TW
• hr
• cs
• da
• nl
• en
• en-US
• et
• fi
• fr
• de
• hu
• it
• ja
• lv
• lt

137Global Routing SDK 3.0 User Guide

Appendix

• no
• pt
• ro
• sk
• sl
• es
• sv
• ru
• tr

138Global Routing SDK 3.0 User Guide

Appendix

1700 District Ave Ste 300

Burlington MA 01803-5231

USA

www.precisely.com

© 2007, 2021 Precisely. All rights reserved.

	Table of Contents
	What is Global Routing SDK?
	Getting Started
	System Requirements
	Installing Data
	Installing the API
	Configuring Routing Properties and Data Resources

	Using Java API
	GetTravelBoundary
	GetRoute
	Commercial Vehicle Restrictions

	GetRouteCostMatrix
	Commercial Vehicle Restrictions

	Persistent Updates
	Transient Updates
	GetSegmentData

	Using REST API
	GetTravelBoundary
	GetTravelBoundary HTTP POST Options

	GetRoute
	GetRoute HTTP POST Options

	GetRouteCostMatrix
	Avoid Specific Routes

	GetRouteCostMatrix HTTP POST Options
	Matrix Partial Response and Warnings

	Response for Multiple Error in a Single Request
	GetSegmentData
	PersistentUpdates
	Point Updates
	Segment Updates
	Road Type Updates
	Remove All Updates
	Get All Updates

	Transient Updates
	GetCapabilities
	DescribeDatasets
	DescribeDatabases

	Closest Arc Snapping
	What is a Restricted Arc
	Impact on Boundary Calculations
	Impact on Route and Matrix Calculations

	Local Roads Load Factor
	Why is it Needed?
	Impact on Routes and Matrices
	Impact on Performance

	Sample Applications
	Appendix
	Java API Road Type Enumeration
	REST API Road Type Enumeration
	Java API Language Enumeration
	REST API Language Enumeration

