
Big Data Quality SDK
Version 12.0

Big Data Quality SDK Guide

1 - Getting Started

Introduction 4
Workflow 5
Who should use the SDK? 6

2 - Installation

System Requirements 8
Required Operating System Updates 8
Installing the SDK 8
Reference Data 12

3 - Modules

Advanced Matching Module 17
Data Normalization Module 22
Universal Addressing Module 23
Universal Name Module 28

4 - The Java API

Introduction 32
Common API Entities 36
Advanced Matching Module Jobs 39
Data Normalization Module Jobs 85
Universal Addressing Module Jobs 97
Universal Name Module Jobs 128

5 - Hive User-Defined Functions

Introduction 138
Advanced Matching Module Functions 145

Data Normalization Module Functions 165
Universal Addressing Module Functions 169
Universal Name Module Functions 179

Chapter : Appendix

Appendix A:
Exceptions 182
Appendix B:
Enums 184
Appendix C:
ISO Country Codes and Module Support 197

Table of Contents

1 - Getting Started

In this section

Introduction 4
Workflow 5
Who should use the SDK? 6

Introduction

The Big Data Quality SDK helps you create, configure and run MapReduce jobs, Spark jobs, and
Hive User-Defined Functions for Data Quality operations on a Hadoop platform.

Using the SDK, you can create and execute the jobs directly on a Hadoop platform, thus eliminating
network delays and running distributed Data Quality processes in cluster, resulting in a drastic
improvement in the performance.

The modules supported in the Big Data Quality SDK are:

1. Advanced Matching Module
2. Data Normalization Module
3. Universal Name Module
4. Universal Addressing Module

SDK Usage
This SDK can currently be used through:

1. Java APIs: Supports MapReduce and Spark
2. Hive User-Defined Functions

Reporting

The Big Data Quality SDK provides the feature of Reporting for certain jobs. This feature uses
specific counters for each supported job, which allow you to monitor the match success achieved
by the corresponding job. The various counters track the number of duplicate records, the number
of unique records, and other useful parameters for an executed job.

The Reporting feature is currently supported in these jobs:

• Interflow Match
• Intraflow Match
• Transactional Match
• Open Name Parser
• Validate Address
• Validate Address Global
• Validate Address Loqate

4Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Getting Started

Workflow

To use the SDK, the components required are:

The Big Data Quality SDK JAR file must be installed on your system and
available for use by your application.

Big Data Quality
SDK Installation

The Java application you must create to invoke and run the required Data
Quality operations using the SDK. The Big Data Quality SDK JAR file must
be imported into your Java application.

Client Application

On running a job using the Big Data Quality SDK, data is first read from the
configured Hadoop platform, and after the relevant processing, the output
data is written to the Hadoop platform.

For this, the access details of the Hadoop platform must be configured
correctly in your machine. For more information, see Overview on page 8.

Hadoop Platform

The Reference Data, required by the Big Data Quality SDK, is placed on the
Hadoop cluster.

Reference Data

To use the Java API, you can opt to place the reference data
on either of the below:

Java API

• Local Data Nodes: The Reference Data is placed on all
available data nodes in the cluster.

Note: This is not a failsafe method.

• Hadoop Distributed File System (HDFS): The Reference
Data is placed on an HDFS directory. This ensures your data
is failsafe.

To use the Hive UDFs, you must place the reference data on
each local data node of the cluster.

Hive UDFs

Note: The SDK also enables Distributed Caching for enhanced performance.

5Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Getting Started

Who should use the SDK?

The Big Data Quality SDK is intended for:

1. Customers who want to do data quality on the data residing on Hadoop.
2. Hadoop developers familiar with MapReduce or Spark programming who wish to create a solution

around a certain use case.
3. Hadoop developers who want to perform data cleansing, data enriching, data deduplication, and

data consolidation operations over existing data.
4. Hive users who are not familiar with the complexities of MapReduce or Spark but are comfortable

with Hive Query Language (HQL), which is syntactically similar to SQL.

6Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Getting Started

2 - Installation

In this section

System Requirements 8
Required Operating System Updates 8
Installing the SDK 8
Reference Data 12

System Requirements

For Hadoop Distributed File System (HDFS) usage:

1. Java JDK version 1.7 and above.
2. Hadoop version 2.6 and above
3. Spark 2.0.1 and above.

For Hive usage:

1. Hive version 1.2.
2. A Hive client of your choice. For example, Beeline.

Note: Spectrum™ Technology Platform can be run only with Hadoop clusters.

Required Operating System Updates

Before installing the Big Data Quality SDK, be sure to apply all the latest product updates available
for your operating system, especially those that resolve issues with Java.

Installing the SDK

Overview

Use the link in your welcome email to download the ZIP file. A typical installer ZIP file is downloaded,
named like BigDataSDK120F0101.zip.

Extract the contents of the downloaded ZIP file on your machine to access the installer, and run the
installer which guides you through the installation process. Once installed, the SDK tool is added
in your system and placed at the defined location.

You can then import the Big Data Quality SDK JAR file into your project and start accessing the
APIs from your machine.

8Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Installation

Supported Modules

Big Data Quality SDK supports the modules.

1. Advanced Matching Module
2. Data Normalization Module
3. Universal Name Module
4. Universal Addressing Module

Note: You must start the Acushare service before creating the first Validate Address job
of the Universal AddressingModule. For more information, seeRunningAcushare Service
on page 11.

SDK Usage

The SDK can currently be used through:

1. Java APIs

• MapReduce API
• Spark API

2. Hive User-Defined Functions

Installer Inclusions

The SDK installation ZIP file contains these components:

1. Readme.txt
2. sdkinst.bin: Installer for LINUX machines.
3. sdkinst.exe: Installer for WINDOWS machine.

Installing SDK on Windows

To install the Big Data Quality SDK on a Windows machine, follow the steps below:

1. Download the Big Data Quality SDK ZIP installer file using the download instructions contained
in your welcome email or the release announcement email.

2. Extract all files from the archive to a location where you want to install Big Data Quality SDK.
3. Go to the installation directory and locate the installer named sdkinst.exe.
4. Double-click the file sdkinst.exe. The installation wizard appears.
5. Click Next. The Choose Install Folder window appears.

9Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Installation

Here, you can specify the folder where you want to install Big Data Quality SDK. For example,
C:\Program Files\Pitney Bowes\Spectrum BigDataSDK\SDK.
a) Click the Choose button to select the required folder.
b) Click the Restore Default Folder button to select the default folder.

Attention: If you select a non-default folder as the installation directory, ensure that the length
of the absolute installation path does not exceed 34 characters.

The default installation path with 27 characters is admissible:

/root/PBSpectrum_BigDataSDK

6. Click Next.
In the Pre-Installation Summary screen, review the installation information.

7. Click Install. The Big Data Quality SDK is installed on your computer.
8. Click Done to finish the installation process.
9. Verify that you have set up the SDK correctly. Go to the location where you have installed the

SDK, for example C:\Program Files\Pitney Bowes\Spectrum BigDataSDK\SDK.

Once you have successfully installed the SDK on your machine, these folders are added in the
install directory:

• API
• Documentation
• modules
• samples
• utilities

Note: To use the jobs of Data Normalization Module, Universal Name Module or Universal
Addressing Module, you must install the respective Reference Data for each module.

Installing SDK on Linux

To install the Big Data Quality SDK using command line on a Linux machine, follow the steps below:

1. Download the Big Data Quality SDK using the download instructions contained in your welcome
email or the release announcement email.

2. Extract all files from the archive to a location on the server where you want to install the Big Data
Quality SDK.

3. Change the directory to the location.
4. Ensure you have execute permission on the files by typing the following command:

chmod a+x sdkinst.bin

5. Run this command:

10Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Installation

./sdkinst.bin

Follow the prompts on the command prompt.

6. When prompted, provide the directory where you want to install the SDK.
For example, /home/hadoop/BDQ_InstallPath.

Attention: If you select a non-default folder as the installation directory, ensure that the length
of the absolute installation path does not exceed 34 characters.

The default installation path with 27 characters is admissible:

/root/PBSpectrum_BigDataSDK

A pre-installation summary is displayed.

7. Review the summary and press ENTER to continue with the installation.
8. See the installation log file to verify that the Big Data Quality SDK has been installed correctly.
9. When you are done, press ENTER to finish and exit the installer.

Once you have successfully installed the SDK on your machine, these folders are added in the
install directory:

• API
• Documentation
• modules
• samples
• utilities

Note: To use the jobs of Data Normalization Module, Universal Name Module or Universal
Addressing Module, you must install the respective Reference Data for each module.

Running Acushare Service

Before creating and running the first Validate Address job, you must run the Acushare service on
each node of the Hadoop or Spark cluster.

Note: This is a one-time mandatory activity to be performed before running the first Validate
Address job.

On each node of the cluster:

1. Copy the Acushare setup script sdkrts.bin from the Big Data Quality SDK installation path to
any location on the node.

Attention: On the SDK server, the Acushare setup script sdkrts.bin is in <BDQ
SDK_InstallPath>/SDK/utilities/dbloader/aq/runtime/bin.

2. Login to the node with admin rights or as a root user.

11Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Installation

3. Go to the path where you have copied the Acushare installer script sdkrts.bin.
4. Ensure you have execute permission on the file by typing the command:

chmod a+x sdkrts.bin

5. Run the installer file and follow the prompts:
./sdkrts.bin

6. When prompted, either press ENTER to select the default runtime path /root/slave_node,
or enter an absolute path of your choice.

Important: The runtime path for Acushare must be the same on all the nodes of the cluster for
the Validate Address job to run.

Note: The selected path must be present on the node before specifying here.

The Acushare service starts automatically once the installation completes successfully.
7. Alternatively, to start the Acushare service manually on a node, go to <Acushare runtime

path>/runtime and run the script file startrts.shwith the argument <Acushare runtime
path>/runtime.

To stop the Acushare service on any node, go to <Acushare
runtime path>/runtime and run the script file stoprts.sh
with the argument <Acushare runtime path>/runtime.

Stopping Acushare service

To uninstall the Acushare service from any node, run the script file
Uninstall_SDKRTS.sh placed at <Acushare runtime
path>/Uninstall.

Uninstalling Acushare
service

Reference Data

Reference Data Overview

The Pitney Bowes Reference Data defines a set of permissible values to be used by other data
fields in your system to ensure data quality. It enhances data validity, accuracy and consistency. It
enables you to extract more value from your data and obtain trusted data from Big Data system.

For example, if you use the Reference Data with Data Normalization Module, you can establish a
single customer identity across the enterprise. A well-defined customer information is the first step
towards improving operational efficiency.

Important: For the Validate Address and Vadidate Address Global jobs, the Reference data must
be placed on all the data nodes of Hadoop cluster. For the Validate Address Loqate job, it must be
placed at one node and that further needs to be mounted to all other datanodes.

12Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Installation

Installation Directory Structure

In the SDK installation directory, the Utilities/dbloader directory contains the child folders:

Contains JAR and scripts to install the Reference Data for:dataquality

• Data Normalization Module
• Universal Name Module

Note: For more information, see Using Reference Data: Data
Normalization Module and Universal Name Module on page 13.

Contains:aq

• The scripts/server/installdb_unc.sh script to install the Reference Data.
You must run this script to install or extract the data.

• runtime folder containing Acushare service set-up information for Universal
Addressing Module's Validate Address job.

Note: For more information, see Using Reference Data: Universal
Addressing Module on page 14.

Using Reference Data: Data Normalization Module and Universal Name
Module

To use the Reference Data for Data Normalization Module and Universal Name Module you
need to run the data loader script file, for example installdb_dnm. Executing the script file enables
you to extract Reference Data to your machine.

Ensure the script file, for example installerdb_dnm, and the JAR file reside in the same folder.

1. Log in to your machine.
2. Change the directory to the location where you have installed the SDK.

After you have successfully installed the Big Data Quality SDK on your machine, you should
have the Reference Data loader in the directory
BDQ_InstallPath/SDK/utilities/dbloader/unix/bin.

3. Run the reference data loader script. For example, installdb_dnm.
A numbered list of stages is displayed and you are prompted to select the stage.

4. Type the number corresponding to the stage for which you want to load the data.
5. Specify the path where the reference data sets are extracted and placed after download.

The reference data input are the base tables of Data Normalization Module, core name data
bases, and the like, which are required to perform the Data Normalization and Universal Name
Modules' jobs.

13Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Installation

6. Specify the path for the output directory. This is the path where your input data will be extracted
to.

7. The system prompts whether you want to view the log file. Select as desired.
8. The system starts loading the data. The data is extracted in the specified output directory.

Note: Repeat the steps for each stage.

Using Reference Data: Universal Addressing Module

To access and use the Reference Data, first fetch the data from the e-store in ZIP format.

For Validate Address Global and Validate Address Loqate, simply extract the contents of the ZIP
file and the Reference Data is ready for use.

For Validate Address, perform the mentioned steps to extract the Reference Data to your machine.

Note: Ensure that execute permission is granted to the aq folder.

1. Log in with admin rights or as a root user.
2. Change the directory to the location

<BDQ_Installation>/SDK/utilities/dbloader/aq/scripts/server.
3. Run the script installdb_unc using the command:

sh installdb_unc.sh <BDQ_Installation/SDK> <Acushare runtime path>

This command also verifies whether the Acushare service is running. If not, then this command
starts the service.

4. After executing this command, the options displayed are:

• US Subscription: Press 1 to list the available types of data loading, as mentioned in the next
step.

• Exit: Press 99 to exit.

5. Enter the specific number for the type of data you want to load.

14Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Installation

6. Specify the path where the sourced data sets are placed.
The data sourced from the e-store is available as Reference Data input, which is required to
perform the Universal Addressing Module's jobs. For the output file location, the system displays
the default output path.

7. The input file location and the output file location are displayed.
Enter c to continue, m to modify the default path or q to quit.

The input data is extracted at your designated output file location.
8. The system prompts to verify whether or not your new RDI file location is correct. Enter y or n.

The system starts loading the data. The data is extracted in the specified output directory.

Note: Repeat the steps for the type of data that you want to load.

15Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Installation

3 - Modules

In this section

Advanced Matching Module 17
Data Normalization Module 22
Universal Addressing Module 23
Universal Name Module 28

Advanced Matching Module

The Advanced Matching Module matches records between and/or within any number of input files.
You can also use the Advanced Matching Module to match on a variety of fields including name,
address, name and address, or non-name/address fields, such as social security number or date
of birth.

The Module also provides jobs to consolidate the records of a group by selecting a best record using
an appropriate configuration, or by synchronizing all the records of a certain group, or filtering out
a particular record from a group of records.

Supported Jobs

The Advanced Matching Module of the Big Data Quality SDK supports the jobs:

1. Match Key Generator
2. Interflow Match

• By generating a match key
• By using the existing match key through the Group By options

3. Intraflow Match

• By generating a match key
• By using the existing match key through the Group By options

4. Transactional Match

• By generating a match key
• By using the existing match key through the Group By options

5. Best of Breed
6. Duplicate Synchronization
7. Filter

Note: While using the Group By option, the match key is already present in the input file,
using which the Group By operation is performed.

17Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Modules

Match Key Generator

Match Key Generator creates a non-unique key for each record, which can then be used by matching
stages to identify groups of potentially duplicate records. Match keys facilitate the matching process
by allowing you to group records by match key and then only comparing records within these groups.

The match key is created using rules you define and is comprised of input fields. Each input field
specified has a selected algorithm that is performed on it. The result of each algorithm is then
concatenated to create a single match key field.

In addition to creating match keys, you can also create express match keys to be used later in the
dataflow by an Intraflow Match stage or an Interflow Match stage.

You can create multiple match keys and express match keys.

For example, if the incoming record is:

First Name - Fred
Last Name - Mertz
Postal Code - 21114-1687
Gender Code - M

And you define a match key rule that generates a match key by combining data from the record like
this:

LengthStart PositionInput Field

51Postal Code

47Postal Code

51Last Name

51First Name

11Gender Code

Then the key would be:

211141687MertzFredM

18Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Modules

Interflow Match

InterflowMatch locates matches between similar data records across two input record streams. The
first record stream is a source for suspect records and the second stream is a source for candidate
records.

Using match group criteria (for example a match key), Interflow Match identifies a group of records
that are potentially duplicates of a particular suspect record.

Reporting
The Interflow Match job allows you to monitor the results of the job. The counters available are:

The number of duplicate collections, which consist of a
suspect and its duplicate records grouped together by a
CollectionNumber.

DUPLICATE_COLLECTIONS

The number of Express Matches made in a collection.

An ExpressMatch is made when a suspect and candidate
have an exact match on the contents of a designated field,

EXPRESS_MATCHES

usually an ExpressMatchKey provided by the Match Key
Generator. If an Express Match is made, no further
processing is done to determine if the suspect and
candidate are duplicates.

The average match score of all duplicates.

The possible values are 0-100, with 0 indicating a poor
match and 100 indicating an exact match.

AVERAGE_SCORE

The number of records in the input stream that the matcher
tried to match to other records.

INPUT_SUSPECTS

The number of input suspects that matched at least one
candidate record.

SUSPECTS_WITH_DUPLICATES

The number of input suspects that did not match any
candidate records.

UNIQUE_SUSPECTS

The number of input suspects that had at least one
candidate record in its match group and therefore had at
least one match attempt.

SUSPECTS_WITH_CANDIDATES

The number of input suspects that had no candidate
records in its match group and therefore had no match
attempts.

SUSPECTS_WITHOUT_CANDIDATES

The total number of duplicate candidates found.TOTAL_DUPLICATE_CANDIDATES
The total match score of all the duplicates.TOTAL_DUPLICATE_SCORE

19Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Modules

Intraflow Match

Intraflow Match locates matches between similar data records within a single input stream. You can
create hierarchical rules based on any fields that have been defined or created in other stages of
the dataflow.

Reporting
The Intraflow Match job allows you to monitor the results of the job. The counters available are:

The number of records in the matching stage before the matching
sort is performed.

INPUT_RECORDS

The number of duplicate records within a match group, which can
be either a suspect or a candidate record.

DUPLICATE_RECORDS

The number of suspect or candidate records which do not match
any other records in their respective match group.

If it is the only record in a match group, a suspect is automatically
unique.

UNIQUE_RECORDS

(Group By) Records grouped together by a match key.MATCH_GROUPS
The number of duplicate collections, which consist of a suspect and
its duplicate records grouped together by a CollectionNumber.

DUPLICATE_COLLECTIONS

The number of Express Matches made in a collection.

An Express Match is made when a suspect and candidate have an
exact match on the contents of a designated field, usually an

EXPRESS_MATCHES

ExpressMatchKey provided by the Match Key Generator. If an
Express Match is made, no further processing is done to determine
if the suspect and candidate are duplicates.

The average match score of all duplicates.

The possible values are 0-100, with 0 indicating a poor match and
100 indicating an exact match.

AVERAGE_SCORE

The total number of duplicates found.TOTAL_DUPLICATES
The total match score of all duplicates.TOTAL_SCORE

Transactional Match

Transactional Match matches suspect records against candidate records of a group of records to
identify duplicates. The records are first grouped by a selected column, post which the first record
is marked as the suspect record. All the remaining records of the group, termed as candidate records,
are matched against the suspect record.

20Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Modules

If the candidate record is a duplicate, it is assigned a collection number, the match record type is
labeled a Duplicate, and the record is then written out. Any unmatched candidates in the group are
assigned a collection number of 0, labeled as Unique and then written out as well.

Reporting
The Transactional Match job allows you to monitor the results of the job. The counters available
are:

The average match score of all duplicates.

The possible values are 0-100, with 0 indicating a poor
match and 100 indicating an exact match.

AVERAGE_SCORE

The number of records in the input stream that the matcher
tried to match to other records.

INPUT_SUSPECTS

The number of input suspects that matched at least one
candidate record.

SUSPECTS_WITH_DUPLICATES

The number of input suspects that did not match any
candidate records.

UNIQUE_SUSPECTS

The number of input suspects that had at least one
candidate record in its match group and therefore had at
least one match attempt.

SUSPECTS_WITH_CANDIDATES

The number of input suspects that had no candidate
records in its match group and therefore had no match
attempts.

SUSPECTS_WITHOUT_CANDIDATES

The total match score of all duplicates.TOTAL_DUPLICATES_SCORE
The total number of duplicates found.TOTAL_DUPLICATES

Best of Breed

Best of Breed consolidates duplicate records by selecting the best data in a duplicate record collection
and creating a new consolidated record using the best data. This "super" record is known as the
best of breed record. You define the rules to use in selecting records to process. When processing
completes, the best of breed record is retained by the system.

Duplicate Synchronization

Duplicate Synchronization determines which fields from a collection of records to copy to the
corresponding fields of all records in the collection. You can specify the rules that records must
satisfy in order to copy the field data to the other records in the collection. When processing has
been completed, all records in the collection are retained.

21Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Modules

Filter

The Filter stage retains or removes records from a group of records based on the rules you specify.

Data Normalization Module

The Data Normalization Module examines terms in a record and determines if the term is in the
preferred form.

• Table Lookup—This stage evaluates a term and compares it to a previously validated form of
that term. If the term is not in the proper form, then the standard version replaces the term. Table
Lookup includes changing full words to abbreviations, changing abbreviations to full words, changing
nick names to full names or misspellings to corrected spellings.

• Advanced Transformer—This stage scans and splits strings of data into multiple fields, placing
the extracted and non extracted data into an existing filed or a new field.

Supported Jobs

The Data Normalization Module of the Big Data Quality SDK supports the jobs:

1. Table Lookup

• Table Lookup with Standardize option
• Table Lookup with Identify option
• Table Lookup with Categorize option

2. Advanced Transformer

• Advanced Transformer with Table Data Extraction option
• Advanced Transformer with Regular Expression Extraction option

Table Lookup

The Table Lookup stage standardizes terms against a previously validated form of that term and
applies the standard version. This evaluation is done by searching a table for the term to standardize.

22Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Modules

Advanced Transformer

The Advanced Transformer job scans and splits strings of data into multiple fields using tables or
regular expressions. It extracts a specific term or a specified number of words to the right or left of
a term. Extracted and non-extracted data can be placed into an existing field or a new field.

For example, want to extract the suite information from this address field and place it in a separate
field.

2300 BIRCH RD STE 100

To accomplish this, you could create an Advanced Transformer that extracts the term STE and all
words to the right of the term STE, leaving the field as:

2300 BIRCH RD

Universal Addressing Module

The Universal Addressing Module is an address quality module that can standardize and validate
addresses, improving the deliverability of mail. The Universal Addressing Module can ensure that
your address data adheres to quality standards established by the postal authority. An address that
adheres to these standards is more likely to be delivered in a timely manner. In addition, mailers
who follow these standards can qualify for significant postage discounts. For information on discounts
for U.S. mail, refer to the USPS Domestic Mail Manual (DMM) available at www.usps.com.

Note: For the UAM jobs, reference data must be placed only on local data nodes in the
cluster.

Supported Jobs

The Universal Addressing Module of the Big Data Quality SDK supports the jobs:

1. Validate Address

Note: This job currently supports US address validations only.

2. Validate Address Global
3. Validate Address Loqate

23Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Modules

http://www.usps.com/

Validate Address

Validate Address standardizes and validates addresses using postal authority address data. Validate
Address can correct information and format the address using the format preferred by the applicable
postal authority. It also adds missing postal information, such as postal codes, city names, state or
province names, and more.

Validate Address also returns result indicators about validation attempts, such as whether or not
Validate Address validated the address, the level of confidence in the returned address, the reason
for failure if the address could not be validated, and more.

During address matching and standardization, Validate Address separates address lines into
components and compares them to the contents of the Universal Addressing Module databases. If
a match is found, the input address is standardized to the database information. If no database
match is found, Validate Address optionally formats the input addresses. The formatting process
attempts to structure the address lines according to the conventions of the appropriate postal
authority.

Note: Currently, Validate Address supports only US addresses.

CASS Reports

You can create and run the Validate Address job in the CASS Certified™ mode using the Big Data
Quality SDK.

Additionally, you can opt to generate these types of CASS reports:

1. CASS Report 3553
2. CASS Detailed Report
3. Validate Address Summary Report

CASS Certified Processing

CASSCertified™ processing also generates the USPS CASS Detailed Report, which contains some
of the same information as the 3553 report but provides much greater detail about DPV, LACS, and
SuiteLink statistics. The USPS CASS Detailed Report is not required for postal discounts and does
not need to be submitted with your mailing.

The CASS Detailed Report is generated in three parts, named as follows:

1. CASS Detail
2. CASS Detail 2
3. CASS Detail 3

For more information about the CASS settings while using the SDK, see Using a Validate Address
MapReduce Job on page 107 andUsing aValidateAddressSpark Job on page 109. For instructions
on how to use reports, see the Dataflow Designer Guide.

24Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Modules

CASS 3553 Report

The USPS CASS 3553 report must be given to the USPS along with the mailing to qualify for certain
discounts. The report contains information about the software you used for CASS processing,
information about your name-and-address list, information about your output file, information about
the mailer, and other statistics about your mailing. For detailed information about USPS Form 3553,
see www.usps.com.

For instructions on how to use reports, see the Dataflow Designer Guide.

CASS Detailed Report

The USPS CASS Detailed Report does not need to be given to the USPS to qualify for certain
discounts. This report contains some of the same information as the 3553 report but provides much
greater detail about DPV, LACS, and SuiteLink statistics.

For instructions on how to use reports, see the Dataflow Designer Guide.

Validate Address Summary Report

The Validate Address Summary Report lists statistics about the job, such as the total number of
records processed, the number of addresses validated, and more.

For instructions on how to use reports, see the Dataflow Designer Guide.

Validate Address Global

Validate Address Global provides enhanced address standardization and validation for addresses
outside the U.S. and Canada. Validate Address Global can also validate addresses in the U.S. and
Canada but its strength is validation of addresses in other countries. If you process a significant
number of addresses outside the U.S. and Canada, you should consider using Validate Address
Global.

Validate Address Global is part of the Universal Addressing Module.

Validate Address Global performs several steps to achieve a quality address, including parsing,
validation, and formatting.

Address Parsing, Formatting, and Standardization

Restructuring incorrectly fielded address data is a complex and difficult task especially when done
for international addresses. People introduce many ambiguities as they enter address data into
computer systems. Among the problems are misplaced elements (such as company or personal
names in street address fields) or varying abbreviations that are not only language, but also country
specific. Validate Address Global identifies address elements in address lines and assigns them to
the proper fields. This is an important precursor to the actual validation. Without restructuring, "no
match" situations might result.

25Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Modules

http://www.usps.com

Properly identified address elements are also important when addresses have to be truncated or
shortened to fit specific field length requirements. With the proper information in the right fields,
specific truncation rules can be applied.

• Parses and analyzes address lines and identifies individual address elements
• Processes over 30 different character sets
• Formats addresses according to the postal rules of the country of destination
• Standardizes address elements (such as changing AVENUE to AVE)

Global Address Validation

Address validation is the correction process where properly parsed address data is compared against
reference databases supplied by postal organizations or other data providers. Validate Address
Global validates individual address elements to check for correctness using sophisticated fuzzy
matching technology and produces standardized and formatted output based on postal standards
and user preferences. FastCompletion validation type can be used in quick address entry applications.
It allows input of truncated data in several address fields and generates suggestions based on this
input.

In some cases, it is not possible to fully validate an address. Here Validate Address Global has a
unique deliverability assessment feature that classifies addresses according to their probable
deliverability.

Reporting Counters

The Validate Address Global job allows you to monitor the statistics of the job once the execution
is complete. The counters provide the reporting statistics across all supported countries in which a
particular Validate Address Global job is run.

For a list of supported countries, refer to ISO Country Codes and Module Support on page 198.

Country based Counters

These counters provide the reporting statistics for the various supported countries. Each counter
label begins with the country code to which the counter value corresponds.

For example, these counters provide the reporting statistics for United States:

1. UNITEDSTATES_STATUS_I4_COUNT
2. UNITEDSTATES_STATUS_S_COUNT
3. UNITEDSTATES_STATUS_I3_COUNT
4. UNITEDSTATES_FAILED_COUNT
5. UNITEDSTATES_STATUS_I2_COUNT
6. UNITEDSTATES_STATUS_C_COUNT
7. UNITEDSTATES_STATUS_V_COUNT

Similarly, the same counters are listed for all the supported countries for which the Validate Address
Global job is run.

26Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Modules

Summary Counters

The summary counters provide a summation of the values of each particular counter type across
countries.

For example, the counter SUMMARY_FAILED_COUNT is the sum of the values of the FAILED_COUNT
counter for all the supported countries in which a particular Validate Address Global job is run.

1. SUMMARY_STATUS_I4_COUNT
2. SUMMARY_STATUS_I2_COUNT
3. SUMMARY_END_TIME
4. SUMMARY_START_TIME
5. SUMMARY_STATUS_V_COUNT
6. SUMMARY_STATUS_C_COUNT
7. SUMMARY_CHARSET
8. SUMMARY_DEFAULT_COUNTRY
9. SUMMARY_STATUS_I3_COUNT
10. SUMMARY_STATUS_S_COUNT
11. SUMMARY_FAILED_COUNT
12. COUNTRY: A comma-separated list of the country codes for which the address validation is run.
13. SUMMARY_CASING: The casing method of the output. For details, refer to the Options section

of the Validate Address Global stage in the Addressing Guide.

Validate Address Loqate

Validate Address Loqate standardizes and validates addresses using postal authority address data.
Validate Address Loqate can correct information and format the address using the format preferred
by the applicable postal authority. It also adds missing postal information, such as postal codes,
city names, state/province names, and so on.

Validate Address Loqate also returns result indicators about validation attempts, such as whether
or not Validate Address Loqate validated the address, the level of confidence in the returned address,
the reason for failure if the address could not be validated, and more.

During address matching and standardization, Validate Address Loqate separates address lines
into components and compares them to the contents of the Universal Addressing Module databases.
If a match is found, the input address is standardized to the database information. If no database
match is found, ValidateAddress Loqate optionally formats the input addresses. The formatting
process attempts to structure the address lines according to the conventions of the appropriate
postal authority.Validate Address Loqate is part of the Universal Addressing Module.

Reporting Counters

The Validate Address Loqate job allows you to monitor the results of the job. The counters available
are:

27Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Modules

1. Original Postal Code Confirmed via Address Match
2. Total Records Successfully Matched
3. House Mismatch
4. Total Records for which Address Validation Attempted
5. Input Record Count
6. Number Range Mismatch
7. Total Records Valid on Input
8. No Postal Code Available
9. Total Unmatched Recorded
10. Total Corrected
11. Total Unmatched Records
12. Postal Code Corrected via Address Match
13. Standard Address Returned Successfully
14. Address Records Processed
15. Street Mismatch
16. Original Postal Code Retained
17. Records Processed by LOQATE

Universal Name Module

To perform the most accurate standardization you may need to break up strings of data into multiple
fields. The Big Data Quality SDK provides advanced parsing features that enable you to parse
personal names, company names, and many other terms and abbreviations.

Supported Jobs

The Universal Name Module of the Big Data Quality SDK supports the job:

1. Open Name Parser

Open Name Parser

Open Name Parser breaks down personal and business names and other terms in the name data
field into their component parts. These parsed name elements are then subsequently available to
other automated operations such as name matching, name standardization, or multi-record name
consolidation.

28Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Modules

Reporting

The Open Name Parser provides summary statistics about the job, such as the total number of input
records and the total number of records that contained no name data, as well as several parsing
statistics.

General Results
The number of records in the input.INPUT_RECORDS
The number of records in the input that do not contain
name data to be parsed.

NO_NAME_DATA_RECORDS

The number of names in the input which were parsed.NAMES_PARSED_OUT
The lowest parsing score given to any name in the input.LOWEST_NAME_PARSING_SCORE
The highest parsing score given to any name in the input.HIGHEST_NAME_PARSING_SCORE
The average parsing score given among all parsed
names in the input.

AVERAGE_NAME_PARSING_SCORE

Personal Name Parsing Results
The number of personal names in the input.PERSONAL_NAME_RECORDS
The number of parsed names from records
that contained conjoined names.

For example, if your input had five records with
two conjoined names, and seven records with

CONJOINED_NAMES_PARSED

three conjoined names, this counter value for
this field is 31, according to the equation: (5 x
2) + (7 x 3).

The number of input records containing two
conjoined names.

TWO_CONJOINED_NAMES_RECORDS

The number of input records containing three
conjoined names.

THREE_CONJOINED_NAMES_RECORDS

The number of parsed names containing a title
of respect.

TITLE_OF_RESPECT_NAMES

The number of parsed names containing a
maturity suffix.

MATURITY_SUFFIX_NAMES

The number of parsed names containing a
general suffix.

GENERAL_SUFFIX_NAMES

The number of parsed names containing an
account description.

ACCOUNT_DESCRIPTION_PERSONAL_NAMES

The number of parsed names in the reverse
order, resulting in the output field
IsReverseOrder as "True".

TOTAL_REVERSE_ORDER_NAMES

29Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Modules

Business Name Parsing Results
The number of input records containing
business names.

BUSINESS_NAME_RECORDS

The number of parsed names containing a firm
suffix.

FIRM_SUFFIX_NAMES

The number of input records containing an
account description.

ACCOUNT_DESCRIPTION_BUSINESS_NAMES

The number of input records containing Doing
Business As (DBA) conjunctions, resulting in

TOTAL_DBA_RECORDS

both output fields isPersonal and isFirm
as "True".

The total number of names parsed.TOTAL_PARSED

The total parsing score of all names.TOTAL_NAME_PARSING_SCORE

30Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Modules

4 - The Java API

In this section

Introduction 32
Common API Entities 36
Advanced Matching Module Jobs 39
Data Normalization Module Jobs 85
Universal Addressing Module Jobs 97
Universal Name Module Jobs 128

Introduction

A Java class is a blueprint or prototype that defines the variables and methods common to all
instances of a certain type. It defines the implementation of a particular kind of instance.

A Java object is an instance of a Java class. It is a real time instance of Java classes, created usng
the Java Virtual Machine. An instance of a class, handled using a variable, encapsulates the real
time information of the class.

Methods of a class define the various functions a class or its object must perform. Methods are
similar to the functions or procedures in procedural languages such as C.

Parameters are used to pass the information an object requires to perform a certain task.

Java software objects interact and communicate with each other using messages.

For more information about Java technology, see www.oracle.com/java.

Components of the SDK Java API

The key components to use a Big Data Quality SDK job using the Java API are:

JAR Files 1. Hadoop JAR files.
2. The JAR files of the module to which the desired Big Data Quality SDK

job belongs, as indicated in the table:

JAR FileJobModule

amm.core-12.0.jarAll AMM jobsAdvanced Matching Module

dnm.core-12.0.jarAll DNM jobsData Normalization Module

uam-universaladdress.core-12.0.jarValidate AddressUniversal AddressingModule

uam-global.core-12.0.jarValidate Address GlobalUniversal AddressingModule

uam-loqate.core-12.0.jarValidate Address
Loqate

Universal AddressingModule

unm.core-12.0.jarAll UNM jobsUniversal Name Module

32Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

http://www.oracle.com/java

Files in XML format containing all parameters and values required to run a
job, including match rules, input file details, output file details, MapReduce
or Spark configuration details, and the like.

Sample configuration XML files are placed at the location <Big Data
Quality bundle>\samples\configuration.

Configuration Files

Java application to use the API to create and run the required Big Data Quality
SDK job provided by its Java API.

Client Java
Application

The created job accesses the configured Hadoop platform to access input
data and dump the output data in a file.

Hadoop Platform

Using the SDK

The SDK can be used to run Big Data Quality SDK jobs using any one of these two approaches:

1. On a console, directly run the module-specific JAR files and pass the various XML -format
configuration properties files as arguments to the commands.

For MapReduce jobs run the hadoop command, while for Spark jobs run the submit-spark
command.

For the steps, see Using Configuration Property Files on page 33.

2. Create your own Java client project by importing the relevant Big Data Quality SDK module JAR
file, specify all required job configurations for your desired job within your client project and run
it.

For the steps, see Creating a Java Application on page 35.

Using Configuration Property Files

Ensure the Big Data Quality SDK is installed on your machine.

You can run a Big Data Quality SDK job using the module-specific JAR files and the configuration
files in XML formats.

The sample configuration properties are shipped with the Big Data Quality SDK and are placed at
the location <Big Data Quality bundle>\samples\configuration.

Note: For a list of the module-specific JAR files, see Components of the SDK Java API
on page 32.

1. For a Linux system, open a command prompt.
For Windows and Unix systems, open an SSH client like Putty.

2. For a MapReduce job, use the command hadoop.

33Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Based on the job you wish to run:

1. Pass the name of the JAR file of that module.
2. Pass the driver class's name RunMRSampleJob.
3. Pass the various configuration files as a list of arguments. Each argument key accepts the

path of a single configuration property file, where each file contains multiple configuration
properties.

The syntax of the command is:

hadoop jar <Name of module JAR file> RunMRSampleJob [-config <Path to
configuration file>] [-debug] [-input <Path to input configuration
file>] [-conf <Path to MapReduce configuration file>] [-output <Path
of output directory>]

For example, for a MapReduce MatchKeyGenerator job:

hadoop jar amm.core.12.0.jar RunMRSampleJob -config
/home/hadoop/matchkey/mkgConfig.xml -input
/home/hadoop/matchkey/inputFileConfig.xml -conf
/home/hadoop/matchkey/mapReduceConfig.xml -output
/home/hadoop/matchkey/outputFileConfig.xml

3. For a Spark job, use the command spark-submit.
Based on the job you wish to run:

1. Pass the name of the JAR file of that module.
2. Pass the driver class's name RunSparkSampleJob.
3. Pass the various configuration files as a list of arguments. Each argument key accepts the

path of a single configuration property file, where each file contains multiple configuration
properties.

The syntax of the command is:

spark-submit –-class RunSparkSampleJob <Name of module JAR file> [-config
<Path to configuration file>] [-debug] [-input <Path to input
configuration file>] [-conf <Path to Spark configuration file>] [-output
<Path of output directory>]

For example, for a Spark MatchKeyGenerator job:

spark-submit --class RunSparkSampleJob amm.core.12.0.jar -config
/home/hadoop/spark/matchkey/matchKeyGeneratorConfig.xml -input
/home/hadoop/spark/matchkey/inputFileConfig.xml -output
/home/hadoop/spark/matchkey/outputFileConfig.xml

Note: To see a list of argument keys supported for the hadoop or spark-submit commands,
run the commands:

hadoop --help

34Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

or

spark-submit --help

Creating a Java Application

Ensure the Big Data Quality SDK is installed on your machine.

To use the SDK:

1. Create a Java project to use the SDK as required using one of these methods:
a) Create a specific Java project to run the required Data Quality operation.

Using this method, you'll need to create separate Java projects for each Data Quality job you
wish to run.

b) Create a common Java project to run any of the desired Data Quality operations using the
corresponding runtime arguments.
Using this method, you'll need to create just one Java project which accepts runtime arguments
corresponding to the desired Data Quality operation.

2. Import the Big Data Quality SDK module-specific JAR file into your project to use the SDK. For
a list of the module-specific JAR files, see Components of the SDK Java API on page 32.

3. Import the required Hadoop JAR files into your project.
4. Create your application to run the desired Data Quality jobs, with appropriate configurations.
5. Build your project, using any build tool like Maven or Ant.

A JAR file of your project is created as a result.

For example, MatchKeyGeneratorClient-with-dependencies.jar is created.

6. Place your project's JAR file on the Hadoop platform.
7. On the Hadoop platform, in a command prompt, change the directory to the path where you have

placed your JAR file.
8. Run the JAR of your project using the command:

hadoop jar <name of the JAR of your client project> <fully qualified
name of the main class>

For example:

hadoop jar MatchKeyGeneratorClient-with-dependencies.jar
com.company.bdq.amm.mr.MatchKeyGeneratorJob

The desired job is created and executed on the Hadoop platform.

Your Java application accesses the input data from the path specified on the Hadoop platform, and
creates and runs the job on the Hadoop platform. The output of the job is dumped into a file at the
specified output path on the Hadoop platform.

35Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Common API Entities

ConjoinedRule

Purpose
A type of consolidation rule, which is used when multiple rules are to be joined using AND and OR
operators. A conjoined rule can include simple rules as its components. See SimpleRule on page
39.

This class allows defining rules for the Advanced Matching Module and the Data Normalization
Module jobs.

ConsolidationCondition

Purpose
To specify the consolidation rules and the corresponding action for the Advanced Matching Module
and the Data Normalization Module jobs.

ConsolidationRule

Purpose
To specify the consolidation rule based on which it must be determined whether action is required
on a record or not.

This class allows defining consolidation rules for the Advanced Matching Module and the Data
Normalization Module jobs.

ConsolidationAction

Purpose
To specify the field which must be copied to other records in a group for a particular consolidation
condition.

This class allows defining consolidation actions for the Advanced Matching Module and the Data
Normalization Module jobs.

36Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

FilePath

Purpose
To specify the details of an input or output text file to run a job.

JobConfig<T extends ProcessType>

Purpose
An interface to specify Hadoop configurations for a job.

MRJobConfig

Purpose
To specify Hadoop configurations for any MapReduce job.

SparkJobConfig

Purpose
To specify Hadoop configurations for any Spark job.

JobDetail<T extends ProcessType>

Purpose
Stores the basic information needed for creation of a job.

JobFactory

Purpose
The base interface to specify to create job instances and specify the details of the jobs to be created.

37Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

JobPath

Purpose
The parent class to specify the details of input source and output destination for a job.

OrcFilePath

To specify the input or output paths of ORC format files to run a job.

ProcessType

Purpose
The parent markup interface for all supported process types, like MapReduce and Spark.

MRProcessType

Purpose
To specify the MapReduce process type for jobs.

SparkProcessType

Purpose
To specify the Spark process type for jobs.

ReferenceDataPath

Purpose
To specify the path of the Reference Data for a job.

ReportManager

Purpose
An interface for retrieving the reporting statistics of a job.

38Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

SimpleRule

Purpose
A type of consolidation rule. A simple rule can be used alone and as a component of a conjoined
rule. See ConjoinedRule on page 36.

Exceptions

JobException

Purpose
Handles job-specific exceptions, displaying appropriate messages.

Advanced Matching Module Jobs

Common Module API

AdvanceMatchDetail<T extends ProcessType>

Purpose
To specify the details of an Advanced Matching Module job.

AdvanceMatchFactory

Purpose
A singleton factory class to create instances of Advanced Matching Module jobs.

GroupbyOption<T extends ProcessType>

Purpose
To specify the column on which grouping is to be performed for an Advanced Matching job.

39Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

GroupbyMROption

Purpose
To specify the column on which grouping is to be performed for an Advanced Matching MapReduce
job.

GroupbySparkOption

Purpose
To specify the column on which grouping is to be performed for an Advanced Matching Spark job.

MatchKeySettings

Purpose
Maintains a List of match keys for a Match Key Generator job.

MatchRule

Purpose
Allows creation of matching rules for Advanced Matching jobs.

This is done by defining a hierarchy of parent and child nodes. Each node maps to one of the input
fields to be matched.

ChildMatchRule

Purpose
To specify a child node of a match rule, which maps to a field and certain algorithms and other
properties.

ParentMatchRule

Purpose
To specify a parent node of a match rule, which is a logical grouping of other parent nodes and child
nodes.

Special Scenarios

Records with Blank Group-By Column
All records with a blank group-by value are marked as malformed records, and dumped in separate
files in the output HDFS folder.

These malformed files are named as below:

40Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Candidate file records with a blank group-by column are discarded as
malformed records and inserted into files with the file naming convention
malformedRecordsCandidate-m-<5 digit numeral>.

For example, malformedRecordsCandidate-m-00000,
malformedRecordsCandidate-m-00001.

Malformed Records in
Candidate Files

This applies to Interflow Match jobs.

Suspect file records with a blank group-by column are discarded as
malformed records and inserted into files with the file naming convention
malformedRecordsSuspect-m-<5 digit numeral>.

For example, malformedRecordsSuspect-m-00000,
malformedRecordsSuspect-m-00001.

Malformed Records in
Suspect Files

This applies to Interflow Match jobs.

Input file records with a blank group-by column are discarded asmalformed
records and inserted into files with the file naming convention
malformedRecords-m-<5 digit numeral>.

For example, malformedRecords-m-00000,
malformedRecords-m-00001.

Malformed Records in
Input Files

This applies to the jobs Intraflow Match, Transactional Match, Best of
Breed, Duplicate Synchronization, and Filter.

Counters for Malformed Records

The number of malformed records in a job run is stored in the counters:

• MALFORMED_CANDIDATE_RECORDS
• MALFORMED_SUSPECT_RECORDS
• MALFORMED_RECORDS

Note: The values in these counters can be accessed by invoking the getCounters()
method of the AdvanceMatchFactory instance.

Match Key Generator

Overview

The Match Key Generator job allows you to generate Match Keys.

Note: To generate a match key for the data, you must run the Match Key Generator job once
before running any other jobs.

41Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

API Entities

MatchKeyGeneratorDetail

Purpose
To specify details of a Match Key Generator job.

Input Parameters

DescriptionParameter

For text files:
File Path

The path of the input text file on the Hadoop platform.
Record Separator

The record separator used in the input file.
Field Separator

The separator used between any two consecutive
fields of a record, in the input file.

Text Qualifier
The character used to surround text values in a
delimited file.

Header Row Fields
An array of the header fields of the input file.

Skip First Row
Flag to indicate if the first row must be skipped while
reading the input file records.

This must be true in case the first row is a header
row.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the input ORC format file on the Hadoop
platform.

Common parameters:
Field Mappings

A map of key value pairs, with the existing column
names as the keys and the desired output column
names as the values.

Input File

42Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the output text file on the Hadoop
platform.

Field Separator
The separator used between any two consecutive
fields of a record, in the output file.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the output ORC format file on the
Hadoop platform.

Common parameters:
Overwrite

Flag to indicate if output file must overwrite any
existing file of same name.

Create Output Header
Flag to indicate if header file is to be created on the
Hadoop server or not.

Output File

The Hadoop configurations for the job.

For a MapReduce job, the instance must be of type MRJobConfig on page 37. For a
Spark job, the instance must be of type SparkJobConfig on page 37.

Job Configurations

A combination of the columns and the algorithms to be applied to generate the match
key, required to perform the matching.

Note: At least one match key must be specified. You can specify more than
one match keys, if required.

Match Key Settings

The name of the job.Job Name

Output Columns

In addition to the input columns, the following columns are added while generating the output of a
Match Key Generator job:

43Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Output ValueDescriptionColumn

The key generated depending on the columns and
algorithms selected to generate the match key.

Note: The number of user-named match key
columns generated in the output depends on
the job settings.

The key generated to identify records.MatchKey

Using a Match Key Generator MapReduce Job

1. Create an instance of AdvanceMatchFactory, using its static method getInstance().
2. Provide the input and output details for the Match Key Generator job by creating an instance of

MatchKeyGeneratorDetail specifying the ProcessType. The instance must use the type
MRProcessType on page 38.
a) Specify the match key settings to perform the matching by creating and configuring an instance

of MatchKeySettings. For more information, see the relevant code sample.
b) Create an instance of MatchKeyGeneratorDetail by passing an instance of type

JobConfig and the MatchKeySettings instance created as the arguments to its constructor.
The JobConfig parameter must be an instance of type MRJobConfig on page 37.

c) Set the details of the input file using the inputPath field of the MatchKeyGeneratorDetail
instance.
For a text input file, create an instance of FilePath with the relevant details of the input file
by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

d) Set the details of the output file using the outputPath field of the
MatchKeyGeneratorDetail instance.
For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

e) Set the name of the job using the jobName field of the MatchKeyGeneratorDetail instance.

3. To create a MapReduce job, use the previously created instance of AdvanceMatchFactory
to invoke its method createJob(). In this, pass the above instance of
MatchKeyGeneratorDetail as an argument.
The createJob()method creates the job and returns a List of instances of ControlledJob.

4. Run the created job using an instance of JobControl.

Using a Match Key Generator Spark Job

1. Create an instance of AdvanceMatchFactory, using its static method getInstance().

44Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

2. Provide the input and output details for the Match Key Generator job by creating an instance of
MatchKeyGeneratorDetail specifying the ProcessType. The instance must use the type
SparkProcessType on page 38.
a) Specify the match key settings to perform the matching by creating and configuring an instance

of MatchKeySettings. For more information, see the relevant code sample.
b) Create an instance of MatchKeyGeneratorDetail by passing an instance of type

JobConfig and the MatchKeySettings instance created as the arguments to its constructor.
The JobConfig parameter must be an instance of type SparkJobConfig on page 37.

c) Set the details of the input file using the inputPath field of the MatchKeyGeneratorDetail
instance.
For a text input file, create an instance of FilePath with the relevant details of the input file
by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

d) Set the details of the output file using the outputPath field of the
MatchKeyGeneratorDetail instance.
For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

e) Set the name of the job using the jobName field of the MatchKeyGeneratorDetail instance.

3. To create and run the Spark job, use the previously created instance of AdvanceMatchFactory
to invoke its method runSparkJob(). In this, pass the above instance of
MatchKeyGeneratorDetail as an argument.
The runSparkJob() method runs the job and returns a Map of the reporting counters of the
job.

Interflow Match

Overview

The Interflow job allows you to generate a Match Key, group records using the Match Key, and
perform intermatching on records from different data sources.

API Entities

InterMatchDetail

Purpose
To specify details of an Interflow Match job.

45Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

InterMatchComparisonOption

Purpose
To specify comparison options while defining an Interflow Match job, whether the suspect record
must be compared to all candidate records, or to any selected candidate record.

Input Parameters

DescriptionParameter

For a MapReduce job, pass the arguments:
GroupBy Column

The name of the column using which the records
are to be grouped.

Number of Reducer Tasks
The number of reducer tasks required to group
the records.

For a Spark job, to create a Group-By option pass the arguments:
GroupBy Column

The name of the column using which the records
are to be grouped.

Group-By Option

Define as many parent and child rules as required, to create a MatchRule object.

For more information, see MatchRule on page 40.

Match Rule

46Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the candidate text file on the Hadoop
platform.

Record Separator
The record separator used in the candidate file.

Field Separator
The separator used between any two consecutive
fields of a record, in the candidate file.

Text Qualifier
The character used to surround text values in a
delimited file.

Header Row Fields
An array of the header fields of the candidate file.

Skip First Row
Flag to indicate if the first row must be skipped
while reading the suspect file records.

This must be true in case the first row is a
header row.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the input ORC format file on the
Hadoop platform.

Important: The suspect and candidate files must be of the same format. Either
both must be text files, or both must be ORC format files.

Common parameters:
Field Mappings

Amap of key value pairs, with the existing column
names as the keys and the desired output column
names as the values.

Candidate File

47Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the suspect text file on the Hadoop
platform.

Record Separator
The record separator used in the suspect file.

Field Separator
The separator used between any two consecutive
fields of a record, in the suspect file.

Text Qualifier
The character used to surround text values in a
delimited file.

Header Row Fields
An array of the header fields of the suspect file.

Skip First Row
Flag to indicate if the first row must be skipped
while reading the suspect file records.

This must be true in case the first row is a
header row.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the input ORC format file on the
Hadoop platform.

Common parameters:
Field Mappings

Amap of key value pairs, with the existing column
names as the keys and the desired output column
names as the values.

Suspect File

48Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the output text file on the Hadoop
platform.

Field Separator
The separator used between any two consecutive
fields of a record, in the output file.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the output ORC format file on the
Hadoop platform.

Common parameters:
Overwrite

Flag to indicate if output file must overwrite any
existing file of same name.

Create Output Header
Flag to indicate if header file is to be created on
the Hadoop server or not.

Output File

The Hadoop configurations for the job.

For a MapReduce job, the instance must be of type MRJobConfig on page 37.
For a Spark job, the instance must be of type SparkJobConfig on page 37.

Job Configurations

A combination of the columns and the algorithms to be applied to generate the
match key, required to perform the matching.

Note: Specify only one match key.

Attention: Set the match key settings only if you wish to generate a match key
before performing the matching.

Match Key Settings

The name of the job.Job Name

The name of the column to be used for express matching of records.Express Match Column

Set this to true to set the collection number of unique records as 0 (zero).Setting Collection Number Zero to
Unique Records

49Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

Allows you to select one of the two options:

• Compare the Suspect record to all Candidate records: Specify whether unique
records must be returned in the output or not.

• Compare the Suspect record to the selected Candidate record only: Specify the
maximum number of duplicate records to be searched and returned.

Comparison Option

Flag to indicate if the output must be compressed.

Set this to true to compress the output.

Compress Output

Output Columns

In addition to the input columns, the following columns are added while generating the output of an
Interflow Match job:

Output ValueDescriptionColumn

The possible values are0-0-1,0-0-2, and
the like.

Identifies a collection of duplicate
records.

Collection Number

1. For a duplicate candidate record matched
using an express match key, the output
value is Y.

2. For a duplicate candidate record matched,
but not using an express match key, the
output value is blank.

3. For a unique candidate record matched
using an express match key, the output
value is N.

4. For a suspect record matched using an
express match key, the output value is
blank.

Indicates whether the match was
obtained using the express match key.

Express Match Identified

The possible values are S for a suspect record,
and C for a candidate record.

Indicates whether the input record is a
suspect record or a candidate record.

Interflow Source Type

The possible values are S (suspect record), D
(duplicate record) and U (unique record).

Identifies the type of match record in a
collection.

Match Record Type

50Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Output ValueDescriptionColumn

The possible values range from 0 (zero) to 100
for duplicate and unique records, where 0
indicates a poor match and 100 indicates a very
high-quality match.

Note: For suspect records, this value
is 0.

Identifies the overall score between two
records.

Match Score

Using an Interflow Match MapReduce Job

1. Create an instance of AdvanceMatchFactory, using its static method getInstance().
2. Provide the input and output details for the Interflow Match job by creating an instance of

InterMatchDetail specifying the ProcessType. The instance must use the type
MRProcessType on page 38.
a) Specify the column using which the records are to be grouped by creating an instance of

GroupbyOption.
Use an instance of GroupbyMROption on page 40 to specify the group-by column and the
number of reducers required.

b) Generate the matching rules for the job by creating an instance of MatchRule.
c) Create an instance of InterMatchDetail, by passing an instance of type JobConfig, the

GroupbyOption instance created, and the MatchRule instance created above as the
arguments to its constructor.
The JobConfig parameter must be an instance of type MRJobConfig on page 37.

d) Set the details of the candidate file using the candidateFilePath field of the
InterMatchDetail instance.
For a text candidate file, create an instance of FilePath with the relevant details of the
candidate file by invoking the appropriate constructor. For an ORC candidate file, create an
instance of OrcFilePath with the path of the ORC candidate file as the argument.

e) Set the details of the suspect file using the suspectFilePath field of the
InterMatchDetail instance.
For a text suspect file, create an instance of FilePathwith the relevant details of the suspect
file by invoking the appropriate constructor. For an ORC suspect file, create an instance of
OrcFilePath with the path of the ORC suspect file as the argument.

Important: The suspect and candidate files must be of the same format. Either both must
be text files, or both must be ORC format files.

f) Set the details of the output file using the outputPath field of the InterMatchDetail
instance.

51Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

g) Set the name of the job using the jobName field of the InterMatchDetail instance.
h) Set the Express Match Column using the expressMatchColumn field of the

InterMatchDetail instance, if required.
i) Set the flag collectionNumberZerotoUniqueRecords of the InterMatchDetail

instance to true to allocate the collection number 0 (zero) to a unique record. The default is
true.
If you do not wish to allocate the collection number zero to unique records, set this flag to
false.

j) Set the comparison option using the comparisonOption field of the InterMatchDetail
instance. In this field, set the required value using the class InterMatchComparisonOption
on page 46 to select one of the two options:

• Compare the Suspect record to all Candidate records: Specify whether unique records
must be returned in the output or not.

• Compare the Suspect record to the selected Candidate record only: Specify the
maximum number of duplicate records to be searched and returned.

k) Set the compressOutput flag of the InterMatchDetail instance to true to compress
the output of the job.

l) If the input data does not have match keys, you must specify the match key settings to first
run the Match Key Generator job to generate the match keys, before running the Interflow
Match job.
To generate the match keys for the input data, specify the match key settings by creating and
configuring an instance of MatchKeySettings to generate a match key before performing
the interflow matching. Set this instance using the matchKeySettings field of the
InterMatchDetail instance.

Note: To see how to set match key settings, see the code samples.

3. To create a MapReduce job, use the previously created instance of AdvanceMatchFactory
to invoke its method createJob(). In this, pass the above instance of InterMatchDetail
as an argument.
The createJob()method creates the job and returns a List of instances of ControlledJob.

4. Run the created job using an instance of JobControl.
5. To display the reporting counters post a successful MapReduce job run, use the previously

created instance of AdvanceMatchFactory to invoke its method getCounters(), passing
the created job as an argument.

52Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Using an Interflow Match Spark Job

1. Create an instance of AdvanceMatchFactory, using its static method getInstance().
2. Provide the input and output details for the Interflow Match job by creating an instance of

InterMatchDetail specifying the ProcessType. The instance must use the type
SparkProcessType on page 38.
a) Specify the column using which the records are to be grouped by creating an instance of

GroupbyOption.
Use an instance of GroupbySparkOption on page 40 to specify the group-by column.

b) Generate the matching rules for the job by creating an instance of MatchRule.
c) Create an instance of InterMatchDetail, by passing an instance of type JobConfig, the

GroupbyOption instance created, and the MatchRule instance created above as the
arguments to its constructor.
The JobConfig parameter must be an instance of type SparkJobConfig on page 37.

d) Set the details of the candidate file using the candidateFilePath field of the
InterMatchDetail instance.
For a text candidate file, create an instance of FilePath with the relevant details of the
candidate file by invoking the appropriate constructor. For an ORC candidate file, create an
instance of OrcFilePath with the path of the ORC candidate file as the argument.

e) Set the details of the suspect file using the suspectFilePath field of the
InterMatchDetail instance.
For a text suspect file, create an instance of FilePathwith the relevant details of the suspect
file by invoking the appropriate constructor. For an ORC suspect file, create an instance of
OrcFilePath with the path of the ORC suspect file as the argument.

Important: The suspect and candidate files must be of the same format. Either both must
be text files, or both must be ORC format files.

f) Set the details of the output file using the outputPath field of the InterMatchDetail
instance.
For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

g) Set the name of the job using the jobName field of the InterMatchDetail instance.
h) Set the Express Match Column using the expressMatchColumn field of the

InterMatchDetail instance, if required.
i) Set the flag collectionNumberZerotoUniqueRecords of the InterMatchDetail

instance to true to allocate the collection number 0 (zero) to a unique record. The default is
true.
If you do not wish to allocate the collection number zero to unique records, set this flag to
false.

53Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

j) Set the comparison option using the comparisonOption field of the InterMatchDetail
instance. In this field, set the required value using the class InterMatchComparisonOption
on page 46 to select one of the two options:

• Compare the Suspect record to all Candidate records: Specify whether unique records
must be returned in the output or not.

• Compare the Suspect record to the selected Candidate record only: Specify the
maximum number of duplicate records to be searched and returned.

k) Set the compressOutput flag of the InterMatchDetail instance to true to compress
the output of the job.

l) If the input data does not have match keys, you must specify the match key settings to first
run the Match Key Generator job to generate the match keys, before running the Interflow
Match job.
To generate the match keys for the input data, specify the match key settings by creating and
configuring an instance of MatchKeySettings to generate a match key before performing
the interflow matching. Set this instance using the matchKeySettings field of the
InterMatchDetail instance.

Note: To see how to set match key settings, see the code samples.

3. To create and run the Spark job, use the previously created instance of AdvanceMatchFactory
to invoke its method runSparkJob(). In this, pass the above instance of InterMatchDetail
as an argument.
The runSparkJob() method runs the job and returns a Map of the reporting counters of the
job.

4. Display the counters to view the reporting statistics for the job.

Intraflow Match

Overview
The Intraflow job allows you to generate a Match Key, group records using the Match Key, and
perform intramatching on records from the same data source.

API Entities

IntraMatchDetail

Purpose
To specify details of an Intraflow Match job.

54Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Input Parameters

DescriptionParameter

For a MapReduce job, pass the arguments:
GroupBy Column

The name of the column using which the records
are to be grouped.

Number of Reducer Tasks
The number of reducer tasks required to group
the records.

For a Spark job, to create a Group-By option pass the arguments:
GroupBy Column

The name of the column using which the records
are to be grouped.

Group-By Option

Define as many parent and child rules as required, to create a MatchRule object.

For more information, see MatchRule on page 40.

Match Rule

55Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the input text file on the Hadoop
platform.

Record Separator
The record separator used in the input file.

Field Separator
The separator used between any two consecutive
fields of a record, in the input file.

Text Qualifier
The character used to surround text values in a
delimited file.

Header Row Fields
An array of the header fields of the input file.

Skip First Row
Flag to indicate if the first row must be skipped
while reading the input file records.

This must be true in case the first row is a
header row.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the input ORC format file on the
Hadoop platform.

Common parameters:
Field Mappings

Amap of key value pairs, with the existing column
names as the keys and the desired output column
names as the values.

Input File

56Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the output text file on the Hadoop
platform.

Field Separator
The separator used between any two consecutive
fields of a record, in the output file.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the output ORC format file on the
Hadoop platform.

Common parameters:
Overwrite

Flag to indicate if output file must overwrite any
existing file of same name.

Create Output Header
Flag to indicate if header file is to be created on
the Hadoop server or not.

Output File

The Hadoop configurations for the job.

For a MapReduce job, the instance must be of type MRJobConfig on page 37.
For a Spark job, the instance must be of type SparkJobConfig on page 37.

Job Configurations

The name of the job.Job Name

The name of the column to be used for express matching of records.Express Match Column

Set this to true to set the collection number of unique records as 0 (zero).Setting Collection Number Zero to
Unique Records

Flag to indicate if the output must be compressed.

Set this to true to compress the output.

Compress Output

57Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

A combination of the columns and the algorithms to be applied to generate the
match key, required to perform the matching.

Note: Specify only one match key.

Attention: Set the match key settings only if you wish to generate a match key
before performing the matching.

Match Key Settings

Output Columns

In addition to the input columns, the following columns are added while generating the output of an
Intraflow Match job:

Output ValueDescriptionColumn

The possible values are0-0-1,0-0-2, and
the like.

Identifies a collection of duplicate
records.

Collection Number

1. For a duplicate candidate record matched
using an express match key, the output
value is Y.

2. For a duplicate candidate record matched,
but not using an express match key, the
output value is blank.

3. For a unique candidate record matched
using an express match key, the output
value is blank.

4. For a suspect record matched using an
express match key, the output value is
blank.

Indicates whether the match was
obtained using the express match key.

Express Match Identified

The possible values are S (suspect record), D
(duplicate record) and U (unique record).

Identifies the type of match record in a
collection.

Match Record Type

The possible values range from 0 (zero) to 100
for duplicate and unique records, where 0
indicates a poor match and 100 indicates a very
high-quality match.

Note: For suspect records, this value
is 0.

Identifies the overall score between two
records.

Match Score

58Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Using an Intraflow Match MapReduce Job

1. Create an instance of AdvanceMatchFactory, using its static method getInstance().
2. Provide the input and output details for the Intraflow Match job by creating an instance of

IntraMatchDetail specifying the ProcessType. The instance must use the type
MRProcessType on page 38.
a) Specify the column using which the records are to be grouped by creating an instance of

GroupbyOption.
Use an instance of GroupbyMROption on page 40 to specify the group-by column and the
number of reducers required.

b) Generate the matching rules for the job by creating an instance of MatchRule.
c) Create an instance of IntraMatchDetail, by passing an instance of type JobConfig, the

GroupbyOption instance created, and the MatchRule instance created above as the
arguments to its constructor.
The JobConfig parameter must be an instance of type MRJobConfig on page 37.

d) Set the details of the input file using the inputPath field of the IntraMatchDetail instance.
For a text input file, create an instance of FilePath with the relevant details of the input file
by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

e) Set the details of the output file using the outputPath field of the IntraMatchDetail
instance.
For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

f) Set the name of the job using the jobName field of the IntraMatchDetail instance.
g) Set the Express Match Column using the expressMatchColumn field of the

IntraMatchDetail instance, if required.
h) Set the flag collectionNumberZerotoUniqueRecords of the IntraMatchDetail

instance to true to allocate the collection number 0 (zero) to a unique record. The default is
true.
If you do not wish to allocate the collection number zero to unique records, set this flag to
false.

i) Set the compressOutput flag of the IntraMatchDetail instance to true to compress
the output of the job.

j) If the input data does not have match keys, you must specify the match key settings to first
run the Match Key Generator job to generate the match keys, before running the Intraflow
Match job.
To generate the match keys for the input data, specify the match key settings by creating and
configuring an instance of MatchKeySettings to generate a match key before performing
the intraflow matching. Set this instance using the matchKeySettings field of the
IntraMatchDetail instance.

59Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Note: To see how to set match key settings, see the code samples.

3. To create a MapReduce job, use the previously created instance of AdvanceMatchFactory
to invoke its method createJob(). In this, pass the above instance of IntraMatchDetail
as an argument.
The createJob()method creates the job and returns a List of instances of ControlledJob.

4. Run the created job using an instance of JobControl.
5. To display the reporting counters post a successful MapReduce job run, use the previously

created instance of AdvanceMatchFactory to invoke its method getCounters(), passing
the created job as an argument.

Using an Intraflow Match Spark Job

1. Create an instance of AdvanceMatchFactory, using its static method getInstance().
2. Provide the input and output details for the Intraflow Match job by creating an instance of

IntraMatchDetail specifying the ProcessType. The instance must use the type
SparkProcessType on page 38.
a) Specify the column using which the records are to be grouped by creating an instance of

GroupbyOption.
Use an instance of GroupbySparkOption on page 40 to specify the group-by column.

b) Generate the matching rules for the job by creating an instance of MatchRule.
c) Create an instance of IntraMatchDetail, by passing an instance of type JobConfig, the

GroupbyOption instance created, and the MatchRule instance created above as the
arguments to its constructor.
The JobConfig parameter must be an instance of type SparkJobConfig on page 37.

d) Set the details of the input file using the inputPath field of the IntraMatchDetail instance.
For a text input file, create an instance of FilePath with the relevant details of the input file
by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

e) Set the details of the output file using the outputPath field of the IntraMatchDetail
instance.
For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

f) Set the name of the job using the jobName field of the IntraMatchDetail instance.
g) Set the Express Match Column using the expressMatchColumn field of the

IntraMatchDetail instance, if required.
h) Set the flag collectionNumberZerotoUniqueRecords of the IntraMatchDetail

instance to true to allocate the collection number 0 (zero) to a unique record. The default is
true.

60Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

If you do not wish to allocate the collection number zero to unique records, set this flag to
false.

i) Set the compressOutput flag of the IntraMatchDetail instance to true to compress
the output of the job.

j) If the input data does not have match keys, you must specify the match key settings to first
run the Match Key Generator job to generate the match keys, before running the Intraflow
Match job.
To generate the match keys for the input data, specify the match key settings by creating and
configuring an instance of MatchKeySettings to generate a match key before performing
the intraflow matching. Set this instance using the matchKeySettings field of the
IntraMatchDetail instance.

Note: To see how to set match key settings, see the code samples.

3. To create and run the Spark job, use the previously created instance of AdvanceMatchFactory
to invoke its method runSparkJob(). In this, pass the above instance of IntraMatchDetail
as an argument.
The runSparkJob() method runs the job and returns a Map of the reporting counters of the
job.

4. Display the counters to view the reporting statistics for the job.

Transactional Match

Overview
The Transactional Match job allows you to match suspect records against candidate records of a
group of records to identify duplicates.

API Entities

TransactionalMatchDetail

Purpose
To specify details of a Transactional Match job.

61Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Input Parameters

DescriptionParameter

For a MapReduce job, pass the arguments:
GroupBy Column

The name of the column using which the records are
to be grouped.

Number of Reducer Tasks
The number of reducer tasks required to group the
records.

For a Spark job, to create a Group-By option pass the arguments:
GroupBy Column

The name of the column using which the records are
to be grouped.

Group-By Option

Define as many parent and child rules as required, to create a MatchRule object.

For more information, see MatchRule on page 40.

Match Rule

62Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the input text file on the Hadoop platform.

Record Separator
The record separator used in the input file.

Field Separator
The separator used between any two consecutive
fields of a record, in the input file.

Text Qualifier
The character used to surround text values in a
delimited file.

Header Row Fields
An array of the header fields of the input file.

Skip First Row
Flag to indicate if the first row must be skipped while
reading the input file records.

This must be true in case the first row is a header
row.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the input ORC format file on the Hadoop
platform.

Common parameters:
Field Mappings

A map of key value pairs, with the existing column
names as the keys and the desired output column
names as the values.

Input File

63Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the output text file on the Hadoop
platform.

Field Separator
The separator used between any two consecutive
fields of a record, in the output file.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the output ORC format file on the
Hadoop platform.

Common parameters:
Overwrite

Flag to indicate if output file must overwrite any
existing file of same name.

Create Output Header
Flag to indicate if header file is to be created on the
Hadoop server or not.

Output File

The name of the job.Job Name

The Hadoop configurations for the job.

For a MapReduce job, the instance must be of type MRJobConfig on page 37. For a
Spark job, the instance must be of type SparkJobConfig on page 37.

Job Configurations

Flag to indicate whether unique candidates must be returned as part of the output.Return Unique Candidates

Flag to indicate if the output must be compressed.

Set this to true to compress the output.

Compress Output

A combination of the columns and the algorithms to be applied to generate the match
key, required to perform the matching.

Note: Specify only one match key.

Attention: Set the match key settings only if you wish to generate a match key before
performing the matching.

Match Key Settings

64Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Output Columns

In addition to the input columns, the following columns are added while generating the output of a
Transactional Match job:

Output ValueDescriptionParameter

The possible values are S (suspect record), D
(duplicate record) and U (unique record).

Identifies the type of match record in a
collection.

Match Record Type

The possible values range from 0 (zero) to 100 for
duplicate and unique records, where 0 indicates a
poor match and 100 indicates a very high-quality
match.

Note: For suspect records, this value is 0.

Identifies the overall score between two
records.

Match Score

For Suspect records, the possible output values are:

• Y (if duplicates are present) OR

• N (if duplicates are absent)

For Duplicate records, the output value is D.

For Unique records, the output value is U.

Indicates whether the suspect records
has duplicates or not

Has Duplicates

Using a Transactional Match MapReduce Job

1. Create an instance of AdvanceMatchFactory, using its static method getInstance().
2. Provide the input and output details for the Transactional Match job by creating an instance of

TransactionalMatchDetail specifying the ProcessType. The instance must use the type
MRProcessType on page 38.
a) Specify the column using which the records are to be grouped by creating an instance of

GroupbyOption.
Use an instance of GroupbyMROption on page 40 to specify the group-by column and the
number of reducers required.

b) Generate the matching rules for the job by creating an instance of MatchRule.
c) Create an instance of TransactionalMatchDetail, by passing an instance of type

JobConfig, the GroupbyOption instance created, and the MatchRule instance created
above as the arguments to its constructor.
The JobConfig parameter must be an instance of type MRJobConfig on page 37.

d) Set the details of the input file using the inputPath field of the
TransactionalMatchDetail instance.

65Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

For a text input file, create an instance of FilePath with the relevant details of the input file
by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

e) Set the details of the output file using the outputPath field of the
TransactionalMatchDetail instance.
For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

f) Set the name of the job using the jobName field of the TransactionalMatchDetail
instance.

g) Set the flag returnUniqueCandidates of the TransactionalMatchDetail instance
to true to return unique candidate records in the output. The default is true.

h) Set the compressOutput flag of the TransactionalMatchDetail instance to true to
compress the output of the job.

i) If the input data does not have match keys, you must specify the match key settings to first
run the Match Key Generator job to generate the match keys, before running the Transactional
Match job.
To generate the match keys for the input data, specify the match key settings by creating and
configuring an instance of MatchKeySettings to generate a match key before performing
the transactional matching. Set this instance using the matchKeySettings field of the
TransactionalMatchDetail instance.

Note: To see how to set match key settings, see the code samples.

3. To create a MapReduce job, use the previously created instance of AdvanceMatchFactory
to invoke its method createJob(). In this, pass the above instance of
TransactionalMatchDetail as an argument.
The createJob()method creates the job and returns a List of instances of ControlledJob.

4. Run the created job using an instance of JobControl.
5. To display the reporting counters post a successful MapReduce job run, use the previously

created instance of AdvanceMatchFactory to invoke its method getCounters(), passing
the created job as an argument.

Using a Transactional Match Spark Job

1. Create an instance of AdvanceMatchFactory, using its static method getInstance().
2. Provide the input and output details for the Transactional Match job by creating an instance of

TransactionalMatchDetail specifying the ProcessType. The instance must use the type
SparkProcessType on page 38.
a) Specify the column using which the records are to be grouped by creating an instance of

GroupbyOption.
Use an instance of GroupbySparkOption on page 40 to specify the group-by column.

66Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

b) Generate the matching rules for the job by creating an instance of MatchRule.
c) Create an instance of TransactionalMatchDetail, by passing an instance of type

JobConfig, the GroupbyOption instance created, and the MatchRule instance created
above as the arguments to its constructor.
The JobConfig parameter must be an instance of type SparkJobConfig on page 37.

d) Set the details of the input file using the inputPath field of the
TransactionalMatchDetail instance.
For a text input file, create an instance of FilePath with the relevant details of the input file
by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

e) Set the details of the output file using the outputPath field of the
TransactionalMatchDetail instance.
For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

f) Set the name of the job using the jobName field of the TransactionalMatchDetail
instance.

g) Set the flag returnUniqueCandidates of the TransactionalMatchDetail instance
to true to return unique candidate records in the output. The default is true.

h) Set the compressOutput flag of the TransactionalMatchDetail instance to true to
compress the output of the job.

i) If the input data does not have match keys, you must specify the match key settings to first
run the Match Key Generator job to generate the match keys, before running the Transactional
Match job.
To generate the match keys for the input data, specify the match key settings by creating and
configuring an instance of MatchKeySettings to generate a match key before performing
the transactional matching. Set this instance using the matchKeySettings field of the
TransactionalMatchDetail instance.

Note: To see how to set match key settings, see the code samples.

3. To create and run the Spark job, use the previously created instance of AdvanceMatchFactory
to invoke its method runSparkJob(). In this, pass the above instance of
TransactionalMatchDetail as an argument.
The runSparkJob() method runs the job and returns a Map of the reporting counters of the
job.

4. Display the counters to view the reporting statistics for the job.

67Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Best of Breed

Overview
The Best of Breed job consolidates duplicate records by selecting the best data in a duplicate record
collection and creating a new consolidated record using the best data.

API Entities

BestOfBreedConfiguration

To specify the consolidation rules and the template rules to perform the Best of Breed consolidation
job.

BestofBreedDetail

Purpose

To specify details of a Best of Breed consolidation job.

Input Parameters

DescriptionParameter

Specify the field using which a single best of breed record is created by merging a
group of similar records. A best of breed record is created for each group of records.

For a MapReduce job, pass the arguments:
GroupBy Column

The name of the column using which the records are
to be grouped.

Number of Reducer Tasks
The number of reducer tasks required to group the
records.

For a Spark job, pass the arguments:
GroupBy Column

The name of the column using which the records are
to be grouped.

Group-By Option

Define the consolidation and template rules using which the best of breed record is to
be created for each collection of similar records.

Best of Breed Configuration

68Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the input text file on the Hadoop platform.

Record Separator
The record separator used in the input file.

Field Separator
The separator used between any two consecutive
fields of a record, in the input file.

Text Qualifier
The character used to surround text values in a
delimited file.

Header Row Fields
An array of the header fields of the input file.

Skip First Row
Flag to indicate if the first row must be skipped while
reading the input file records.

This must be true in case the first row is a header
row.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the input ORC format file on the Hadoop
platform.

Common parameters:
Field Mappings

A map of key value pairs, with the existing column
names as the keys and the desired output column
names as the values.

Input File

69Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the output text file on the Hadoop
platform.

Field Separator
The separator used between any two consecutive
fields of a record, in the output file.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the output ORC format file on the
Hadoop platform.

Common parameters:
Overwrite

Flag to indicate if output file must overwrite any
existing file of same name.

Create Output Header
Flag to indicate if header file is to be created on the
Hadoop server or not.

Output File

The name of the job.Job Name

The Hadoop configurations for the job.

For a MapReduce job, the instance must be of type MRJobConfig on page 37. For a
Spark job, the instance must be of type SparkJobConfig on page 37.

Job Configurations

Flag to indicate if the output must be compressed.

Set this to true to compress the output.

Compress Output

Output Columns

In addition to the input columns, the following columns are added while generating the output of a
Best of Breed job:

70Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Output ValueDescriptionParameter

If a template record is defined, the possible values
are:
Primary

If the record is the
selected template
record in a collection.

Secondary
If the record is not the
selected template
record in a collection.

BestOfBreed
If the record is the
newly created best of
breed record in the
collection.

If no template record is defined, the only possible
value is BestOfBreed.

Identifies the template and best of breed
records in a collection of duplicate
records.

Collection Record Type

Note: Other output columns, apart from Collection Record Type, are displayed only if they
are defined while creating the consolidation conditions for the Best of Breed configuration.

Using a Best of Breed MapReduce Job

1. Create an instance of AdvanceMatchFactory, using its static method getInstance().
2. Provide the input and output details for the Best of Breed job by creating an instance of

BestofBreedDetail specifying the ProcessType. The instance must use the type
MRProcessType on page 38.
a) Specify the column using which the records are to be grouped by creating an instance of

GroupbyOption.
Use an instance of GroupbyMROption on page 40 to specify the group-by column and the
number of reducers required.

b) Generate the consolidation and template rules for the job by creating an instance of
BestOfBreedConfiguration. Within this instance:

1. Define the template record for the consolidation using an instance of
ConsolidationCondition, which comprises of ConsolidationRule instances.

2. Define the consolidation conditions using instances of ConsolidationCondition, and
connecting the conditions using logical operators.

71Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Each instance of ConsolidationCondition is defined using a ConsolidationRule
instance and its corresponding ConsolidationAction instance.

Note: Each instance of ConsolidationRule can be defined either using a single
instance of SimpleRule, or using a hierarchy of child SimpleRule instances and
nested ConjoinedRule instances joined using logical operators. See Enum JoinType
on page 187 and Enum Operation on page 186.

c) Create an instance of BestofBreedDetail, by passing an instance of type JobConfig,
the GroupbyOption instance created, and the BestOfBreedConfiguration instance
created above as the arguments to its constructor.
The JobConfig parameter must be an instance of type MRJobConfig on page 37.

d) Set the details of the input file using the inputPath field of the BestofBreedDetail
instance.
For a text input file, create an instance of FilePath with the relevant details of the input file
by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

e) Set the details of the output file using the outputPath field of the BestofBreedDetail
instance.
For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

f) Set the name of the job using the jobName field of the BestofBreedDetail instance.
g) Set the compressOutput flag of the BestofBreedDetail instance to true to compress

the output of the job.

3. To create a MapReduce job, use the previously created instance of AdvanceMatchFactory
to invoke its method createJob(). In this, pass the above instance of BestofBreedDetail
as an argument.
The createJob()method creates the job and returns a List of instances of ControlledJob.

4. Run the created job using an instance of JobControl.
5. To display the reporting counters post a successful MapReduce job run, use the previously

created instance of AdvanceMatchFactory to invoke its method getCounters(), passing
the created job as an argument.

Using a Best of Breed Spark Job

1. Create an instance of AdvanceMatchFactory, using its static method getInstance().
2. Provide the input and output details for the Best of Breed job by creating an instance of

BestofBreedDetail specifying the ProcessType. The instance must use the type
SparkProcessType on page 38.

72Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

a) Specify the column using which the records are to be grouped by creating an instance of
GroupbyOption.
Use an instance of GroupbySparkOption on page 40 to specify the group-by column.

b) Generate the consolidation and template rules for the job by creating an instance of
BestOfBreedConfiguration. Within this instance:

1. Define the template record for the consolidation using an instance of
ConsolidationCondition, which comprises of ConsolidationRule instances.

2. Define the consolidation conditions using instances of ConsolidationCondition, and
connecting the conditions using logical operators.

Each instance of ConsolidationCondition is defined using a ConsolidationRule
instance and its corresponding ConsolidationAction instance.

Note: Each instance of ConsolidationRule can be defined either using a single
instance of SimpleRule, or using a hierarchy of child SimpleRule instances and
nested ConjoinedRule instances joined using logical operators. See Enum JoinType
on page 187 and Enum Operation on page 186.

c) Create an instance of BestofBreedDetail, by passing an instance of type JobConfig,
the GroupbyOption instance created, and the BestOfBreedConfiguration instance
created above as the arguments to its constructor.
The JobConfig parameter must be an instance of type SparkJobConfig on page 37.

d) Set the details of the input file using the inputPath field of the BestofBreedDetail
instance.
For a text input file, create an instance of FilePath with the relevant details of the input file
by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

e) Set the details of the output file using the outputPath field of the BestofBreedDetail
instance.
For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

f) Set the name of the job using the jobName field of the BestofBreedDetail instance.
g) Set the compressOutput flag of the BestofBreedDetail instance to true to compress

the output of the job.

3. To create and run the Spark job, use the previously created instance of AdvanceMatchFactory
to invoke its method runSparkJob(). In this, pass the above instance of BestofBreedDetail
as an argument.
The runSparkJob() method runs the job and returns a Map of the reporting counters of the
job.

4. Display the counters to view the reporting statistics for the job.

73Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Duplicate Synchronization

Overview
The Duplicate Synchronization job allows you to determine which fields from a collection of records
to copy to the corresponding fields of all records in the collection.

API Entities

DuplicateSynchronizationConfiguration

To specify the consolidation rules to perform the Duplicate Synchronization consolidation job.

DuplicateSyncDetail

Purpose
To specify details of a Duplicate Synchronization consolidation job.

Input Parameters

DescriptionParameter

Specifies the field to use to create groups of records to synchronize.

For a MapReduce job, pass the arguments:
GroupBy Column

The name of the column using which the records are
to be grouped.

Number of Reducer Tasks
The number of reducer tasks required to group the
records.

For a Spark job, to create a Group-By option pass the arguments:
GroupBy Column

The name of the column using which the records are
to be grouped.

Note: If there is no group in the input, then set this parameter to null. In this
case, the entire data is considered in a single group.

Group-By Option

The rules based on which the fields of one record are copied to the other records of a
collection.

Duplicate Synchronization
Configuration

74Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the input text file on the Hadoop platform.

Record Separator
The record separator used in the input file.

Field Separator
The separator used between any two consecutive
fields of a record, in the input file.

Text Qualifier
The character used to surround text values in a
delimited file.

Header Row Fields
An array of the header fields of the input file.

Skip First Row
Flag to indicate if the first row must be skipped while
reading the input file records.

This must be true in case the first row is a header
row.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the input ORC format file on the Hadoop
platform.

Common parameters:
Field Mappings

A map of key value pairs, with the existing column
names as the keys and the desired output column
names as the values.

Input File

75Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the output text file on the Hadoop
platform.

Field Separator
The separator used between any two consecutive
fields of a record, in the output file.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the output ORC format file on the Hadoop
platform.

Common parameters:
Overwrite

Flag to indicate if output file must overwrite any
existing file of same name.

Create Output Header
Flag to indicate if header file is to be created on the
Hadoop server or not.

Output File

The name of the job.Job Name

Flag to indicate if the output must be compressed.

Set this to true to compress the output.

Compress Output

Output Columns

Based on the consolidation conditions defined in the Duplicate Synchronization Configuration input
parameter, columns may be added to the output in addition to the input columns, as required.

Using a Duplicate Synchronization MapReduce Job

1. Create an instance of AdvanceMatchFactory, using its static method getInstance().
2. Provide the input and output details for the Duplicate Synchronization job by creating an instance

of DuplicateSyncDetail specifying the ProcessType. The instance must use the type
MRProcessType on page 38.
a) Specify the column using which the records are to be grouped by creating an instance of

GroupbyOption.

76Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Use an instance of GroupbyMROption on page 40 to specify the group-by column and the
number of reducers required.

b) Generate the consolidation conditions for the job by creating an instance of
DuplicateSynchronizationConfiguration.Within this instance, define the consolidation
conditions using instances of ConsolidationCondition, and connecting the conditions
using logical operators.
Each instance of ConsolidationCondition is defined using a ConsolidationRule
instance and its corresponding ConsolidationAction instance.

Note: Each instance of ConsolidationRule can be defined either using a single
instance of SimpleRule, or using a hierarchy of child SimpleRule instances and
nested ConjoinedRule instances joined using logical operators. See Enum JoinType
on page 187 and Enum Operation on page 186.

c) Create an instance of DuplicateSyncDetail, by passing an instance of type JobConfig,
the GroupbyOption instance created, and the
DuplicateSynchronizationConfiguration instance created above as the arguments
to its constructor.
The JobConfig parameter must be an instance of type MRJobConfig on page 37.

d) Set the details of the input file using the inputPath field of the DuplicateSyncDetail
instance.
For a text input file, create an instance of FilePath with the relevant details of the input file
by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

e) Set the details of the output file using the outputPath field of the DuplicateSyncDetail
instance.
For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

f) Set the name of the job using the jobName field of the DuplicateSyncDetail instance.
g) Set the compressOutput flag of the DuplicateSyncDetail instance to true to compress

the output of the job.

3. Create the job by using the previously created instance of AdvanceMatchFactory to invoke
its method createJob(). In this, pass the above instance of DuplicateSyncDetail as an
argument.
The createJob() method returns a List of instances of ControlledJob.

4. Run the created job using an instance of JobControl.
5. To display the reporting counters post a successful MapReduce job run, use the previously

created instance of AdvanceMatchFactory to invoke its method getCounters(), passing
the created job as an argument.

77Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Using a Duplicate Synchronization Spark Job

1. Create an instance of AdvanceMatchFactory, using its static method getInstance().
2. Provide the input and output details for the Duplicate Synchronization job by creating an instance

of DuplicateSyncDetail specifying the ProcessType. The instance must use the type
SparkProcessType on page 38.
a) Specify the column using which the records are to be grouped by creating an instance of

GroupbyOption.
Use an instance of GroupbySparkOption on page 40 to specify the group-by column.

b) Generate the consolidation conditions for the job by creating an instance of
DuplicateSynchronizationConfiguration.Within this instance, define the consolidation
conditions using instances of ConsolidationCondition, and connecting the conditions
using logical operators.
Each instance of ConsolidationCondition is defined using a ConsolidationRule
instance and its corresponding ConsolidationAction instance.

Note: Each instance of ConsolidationRule can be defined either using a single
instance of SimpleRule, or using a hierarchy of child SimpleRule instances and
nested ConjoinedRule instances joined using logical operators. See Enum JoinType
on page 187 and Enum Operation on page 186.

c) Create an instance of DuplicateSyncDetail, by passing an instance of type JobConfig,
the GroupbyOption instance created, and the
DuplicateSynchronizationConfiguration instance created above as the arguments
to its constructor.
The JobConfig parameter must be an instance of type SparkJobConfig on page 37.

d) Set the details of the input file using the inputPath field of the DuplicateSyncDetail
instance.
For a text input file, create an instance of FilePath with the relevant details of the input file
by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

e) Set the details of the output file using the outputPath field of the DuplicateSyncDetail
instance.
For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

f) Set the name of the job using the jobName field of the DuplicateSyncDetail instance.
g) Set the compressOutput flag of the DuplicateSyncDetail instance to true to compress

the output of the job.

78Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

3. To create and run the Spark job, use the previously created instance of AdvanceMatchFactory
to invoke its method runSparkJob(). In this, pass the above instance of
DuplicateSyncDetail as an argument.
The runSparkJob() method runs the job and returns a Map of the reporting counters of the
job.

4. Display the counters to view the reporting statistics for the job.

Filter

Overview
The Filter job retains or removes records from a group of records based on the rules you specify.

API Entities

FilterConfiguration

To specify the consolidation rules to perform the Filter consolidation job.

FilterDetail

Purpose
To specify details of a Filter consolidation job.

79Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Input Parameters

DescriptionParameter

Specifies the field to use to create groups of records to filter. The Filter job retains one
or more records from each group.

For a MapReduce job, pass the arguments:

GroupBy Column
The name of the column using which the records are
to be grouped.

Number of Reducer Tasks
The number of reducer tasks required to group the
records.

For a Spark job, to create a Group-By option pass the arguments:
GroupBy Column

The name of the column using which the records are
to be grouped.

Note: If there is no group in the input, then set this parameter to null. In this
case, the entire data is considered in a single group.

Group-By Option

Defines the consolidation conditions based on which the job retains one or more records
from each group.

Filter Configuration

80Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the input text file on the Hadoop platform.

Record Separator
The record separator used in the input file.

Field Separator
The separator used between any two consecutive
fields of a record, in the input file.

Text Qualifier
The character used to surround text values in a
delimited file.

Header Row Fields
An array of the header fields of the input file.

Skip First Row
Flag to indicate if the first row must be skipped while
reading the input file records.

This must be true in case the first row is a header
row.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the input ORC format file on the Hadoop
platform.

Common parameters:
Field Mappings

A map of key value pairs, with the existing column
names as the keys and the desired output column
names as the values.

Input File

81Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the output text file on the Hadoop
platform.

Field Separator
The separator used between any two consecutive
fields of a record, in the output file.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the output ORC format file on the Hadoop
platform.

Common parameters:
Overwrite

Flag to indicate if output file must overwrite any
existing file of same name.

Create Output Header
Flag to indicate if header file is to be created on the
Hadoop server or not.

Output File

The name of the job.Job Name

Flag to indicate if the output must be compressed.

Set this to true to compress the output.

Compress Output

Output Columns

The output columns are the same as the input columns. No additional columns are added in the
output.

Using a Filter MapReduce Job

1. Create an instance of AdvanceMatchFactory, using its static method getInstance().
2. Provide the input and output details for the Filter job by creating an instance of FilterDetail

specifying the ProcessType. The instance must use the type MRProcessType on page 38.
a) Specify the column using which the records are to be grouped by creating an instance of

GroupbyOption.
Use an instance of GroupbyMROption on page 40 to specify the group-by column and the
number of reducers required.

82Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

b) Generate the consolidation rules for the job by creating an instance of
FilterConfiguration. Within this instance, define the consolidation conditions using
instances of ConsolidationCondition, and connecting the conditions using logical
operators.
Each instance of ConsolidationCondition is defined using a ConsolidationRule
instance and its corresponding ConsolidationAction instance.

Note: Each instance of ConsolidationRule can be defined either using a single
instance of SimpleRule, or using a hierarchy of child SimpleRule instances and
nested ConjoinedRule instances joined using logical operators. See Enum JoinType
on page 187 and Enum Operation on page 186.

c) Create an instance of FilterDetail, by passing an instance of type JobConfig, the
GroupbyOption instance created, and the FilterConfiguration instance created above
as the arguments to its constructor.
The JobConfig parameter must be an instance of type MRJobConfig on page 37.

d) Set the details of the input file using the inputPath field of the FilterDetail instance.
For a text input file, create an instance of FilePath with the relevant details of the input file
by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

e) Set the details of the output file using the outputPath field of the FilterDetail instance.
For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

f) Set the name of the job using the jobName field of the FilterDetail instance.
g) Set the compressOutput flag of the FilterDetail instance to true to compress the

output of the job.

3. Create the job by using the previously created instance of AdvanceMatchFactory to invoke
its method createJob(). In this, pass the above instance of FilterDetail as an argument.
The createJob() method returns a List of instances of ControlledJob.

4. Run the created job using an instance of JobControl.
5. To display the reporting counters post a successful MapReduce job run, use the previously

created instance of AdvanceMatchFactory to invoke its method getCounters(), passing
the created job as an argument.

Using a Filter Spark Job

1. Create an instance of AdvanceMatchFactory, using its static method getInstance().
2. Provide the input and output details for the Filter job by creating an instance of FilterDetail

specifying the ProcessType. The instance must use the type SparkProcessType on page 38.
a) Specify the column using which the records are to be grouped by creating an instance of

GroupbyOption.

83Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Use an instance of GroupbySparkOption on page 40 to specify the group-by column.
b) Generate the consolidation rules for the job by creating an instance of

FilterConfiguration. Within this instance, define the consolidation conditions using
instances of ConsolidationCondition, and connecting the conditions using logical
operators.
Each instance of ConsolidationCondition is defined using a ConsolidationRule
instance and its corresponding ConsolidationAction instance.

Note: Each instance of ConsolidationRule can be defined either using a single
instance of SimpleRule, or using a hierarchy of child SimpleRule instances and
nested ConjoinedRule instances joined using logical operators. See Enum JoinType
on page 187 and Enum Operation on page 186.

c) Create an instance of FilterDetail, by passing an instance of type JobConfig, the
GroupbyOption instance created, and the FilterConfiguration instance created above
as the arguments to its constructor.
The JobConfig parameter must be an instance of type SparkJobConfig on page 37.

d) Set the details of the input file using the inputPath field of the FilterDetail instance.
For a text input file, create an instance of FilePath with the relevant details of the input file
by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

e) Set the details of the output file using the outputPath field of the FilterDetail instance.
For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

f) Set the name of the job using the jobName field of the FilterDetail instance.
g) Set the compressOutput flag of the FilterDetail instance to true to compress the

output of the job.

3. To create and run the Spark job, use the previously created instance of AdvanceMatchFactory
to invoke its method runSparkJob(). In this, pass the above instance of FilterDetail as
an argument.
The runSparkJob() method runs the job and returns a Map of the reporting counters of the
job.

4. Display the counters to view the reporting statistics for the job.

84Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Data Normalization Module Jobs

Common Module API

DataNormalizationDetail<T extends ProcessType>

Purpose
To specify the details of a Data Normalization Module job.

DataNormalizationFactory

Purpose
A singleton factory class to create instances of Data Normalization Module jobs.

Table Lookup

Overview
The Table Lookup job standardizes terms against a previously validated form of that term and applies
the standard version.

API Entities

AbstractTableLookupRule

Purpose
To specify the rule to be used for Table Lookup.

Categorize

Purpose
To specify the Categorize rule for a Table Lookup job.

Identify

Purpose
To specify the Identify rule for a Table Lookup job.

85Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Standardize

Purpose
To specify the Standardize rule for a Table Lookup job.

TableLookupDetail

Purpose
To specify details of a Table Lookup job.

TableLookupConfiguration

Purpose
To standardize terms against a previously validated form of that term, and to apply the standardized
version to all records.

Input Parameters

DescriptionParameter

To standardize terms against a previously validated form of that term, and to apply the
standardized version to all records.

The rules can be of the type Standardize, Categorize or Identify.

Table Lookup Configuration

To specify the Reference Data path details.Reference Data Path

The Hadoop configurations for the job.

For a MapReduce job, the instance must be of type MRJobConfig on page 37. For a
Spark job, the instance must be of type SparkJobConfig on page 37.

Job Configurations

86Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the input text file on the Hadoop platform.

Record Separator
The record separator used in the input file.

Field Separator
The separator used between any two consecutive
fields of a record, in the input file.

Text Qualifier
The character used to surround text values in a
delimited file.

Header Row Fields
An array of the header fields of the input file.

Skip First Row
Flag to indicate if the first row must be skipped while
reading the input file records.

This must be true in case the first row is a header
row.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the input ORC format file on the Hadoop
platform.

Common parameters:
Field Mappings

A map of key value pairs, with the existing column
names as the keys and the desired output column
names as the values.

Input File

87Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the output text file on the Hadoop
platform.

Field Separator
The separator used between any two consecutive
fields of a record, in the output file.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the output ORC format file on the Hadoop
platform.

Common parameters:
Overwrite

Flag to indicate if output file must overwrite any
existing file of same name.

Create Output Header
Flag to indicate if header file is to be created on the
Hadoop server or not.

Output File

The name of the job.Job Name

Flag to indicate if the output must be compressed.

Set this to true to compress the output.

Compress Output

Output Columns

In addition to the input columns, the following columns are added while generating the output of a
Table Lookup job:

88Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Output ValueDescriptionColumn

The standardized value of the source columns,
matched against the table data.

For Standardize and Categorize
rule options, this output column is
added if a new column name, not
present in the input, is specified as the
destination column.

The name of the column is as entered
by you.

Note: For the destination
column, you can select an
existing source column or type
a new column name.

Destination

The possible value is Yes and No.Indicates whether the standardized term
has been identified or not.

Standardization Term Identified

Using a Table Lookup MapReduce Job

1. Create an instance of DataNormalizationFactory, using its static method getInstance().
2. Provide the input and output details for the Table Lookup job by creating an instance of

TableLookupDetail specifying the ProcessType. The instance must use the type
MRProcessType on page 38.
a) Configure the table lookup rules by creating an instance of TableLookupConfiguration.

Within this instance:
Add an instance of type AbstractTableLookupRule. This AbstractTableLookupRule
instance must be defined using one of these classes: Standardize, Categorize or
Identify, corresponding to the desired table lookup rule category.

b) Set the details of the Reference Data path and location type by creating an instance of
ReferenceDataPath. See Enum ReferenceDataPathLocation on page 186.

c) Create an instance of TableLookupDetail, by passing an instance of type JobConfig,
and the TableLookupConfiguration and ReferenceDataPath instances created earlier
as the arguments to its constructor.
The JobConfig parameter must be an instance of type MRJobConfig on page 37.

d) Set the details of the input file using the inputPath field of the TableLookupDetail
instance.
For a text input file, create an instance of FilePath with the relevant details of the input file
by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

e) Set the details of the output file using the outputPath field of the TableLookupDetail
instance.

89Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

f) Set the name of the job using the jobName field of the TableLookupDetail instance.
g) Set the compressOutput flag of the TableLookupDetail instance to true to compress

the output of the job.

3. To create a MapReduce job, use the previously created instance of
DataNormalizationFactory to invoke its method createJob(). In this, pass the above
instance of TableLookupDetail as an argument.
The createJob() method returns a List of instances of ControlledJob.

4. Run the created job using an instance of JobControl.
5. To display the reporting counters post a successful MapReduce job run, use the previously

created instance of DataNormalizationFactory to invoke its method getCounters(),
passing the created job as an argument.

Using a Table Lookup Spark Job

1. Create an instance of DataNormalizationFactory, using its static method getInstance().
2. Provide the input and output details for the Table Lookup job by creating an instance of

TableLookupDetail specifying the ProcessType. The instance must use the type
SparkProcessType on page 38.
a) Configure the table lookup rules by creating an instance of TableLookupConfiguration.

Within this instance:
Add an instance of type AbstractTableLookupRule. This AbstractTableLookupRule
instance must be defined using one of these classes: Standardize, Categorize or
Identify, corresponding to the desired table lookup rule category.

b) Set the details of the Reference Data path and location type by creating an instance of
ReferenceDataPath. See Enum ReferenceDataPathLocation on page 186.

c) Create an instance of TableLookupDetail, by passing an instance of type JobConfig,
and the TableLookupConfiguration and ReferenceDataPath instances created earlier
as the arguments to its constructor.
The JobConfig parameter must be an instance of type SparkJobConfig on page 37.

d) Set the details of the input file using the inputPath field of the TableLookupDetail
instance.
For a text input file, create an instance of FilePath with the relevant details of the input file
by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

e) Set the details of the output file using the outputPath field of the TableLookupDetail
instance.

90Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

f) Set the name of the job using the jobName field of the TableLookupDetail instance.
g) Set the compressOutput flag of the TableLookupDetail instance to true to compress

the output of the job.

3. To create and run the Spark job, use the previously created instance of
DataNormalizationFactory to invoke its method runSparkJob(). In this, pass the above
instance of TableLookupDetail as an argument.
The runSparkJob() method runs the job and returns a Map of the reporting counters of the
job.

4. Display the counters to view the reporting statistics for the job.

Advanced Transformer

Overview
The Advanced Transformer job scans and splits strings of data into multiple fields using tables or
regular expressions. It extracts a specific term or a specified number of words to the right or left of
a term.

API Entities

AbstractAdvancedTransformerRules

Purpose
Parent class to specify the rules for an Advanced Transformer job.

AdvancedTransformerDetail

Purpose
To specify details of an Advanced Transformer job.

AdvancedTransformerConfiguration

Purpose
To scan and split strings of data into multiple fields using tables or regular expressions.

RegularExpressionExtraction

Purpose
To specify rules to extract data using regular expressions.

91Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

RegularExpressionGroupItem

Purpose
To specify a part of a parent regular expression. Each part of a parent regular expression can be
stored in a different output field.

TableDataExtraction

Purpose
To defines rules for extracting data from table.

Input Parameters

DescriptionParameter

To scan and split strings of data into multiple fields using tables or regular expressions.

Allows extraction of a specific term or a specified number of words to the right or left of
a term. Extracted and non-extracted data are placed into an existing field or a new field.

The Advanced Transformer rules can be defined using an instance of type
AdvancedTransformerConfiguration. This instancemust be an instance of either
TableDataExtraction or RegularExpressionExtraction.

Advanced Transformer
Configuration

To specify the Reference Data path details.Reference Data Path

The Hadoop configurations for the job.

For a MapReduce job, the instance must be of type MRJobConfig on page 37. For a
Spark job, the instance must be of type SparkJobConfig on page 37.

Job Configurations

92Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the input text file on the Hadoop platform.

Record Separator
The record separator used in the input file.

Field Separator
The separator used between any two consecutive
fields of a record, in the input file.

Text Qualifier
The character used to surround text values in a
delimited file.

Header Row Fields
An array of the header fields of the input file.

Skip First Row
Flag to indicate if the first row must be skipped while
reading the input file records.

This must be true in case the first row is a header
row.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the input ORC format file on the Hadoop
platform.

Common parameters:
Field Mappings

A map of key value pairs, with the existing column
names as the keys and the desired output column
names as the values.

Input File

93Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the output text file on the Hadoop
platform.

Field Separator
The separator used between any two consecutive
fields of a record, in the output file.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the output ORC format file on the Hadoop
platform.

Common parameters:
Overwrite

Flag to indicate if output file must overwrite any
existing file of same name.

Create Output Header
Flag to indicate if header file is to be created on the
Hadoop server or not.

Output File

The name of the job.Job Name

Output Columns

In addition to the input columns, the following columns are added while generating the output of an
Advanced Transformer job:

Output ValueDescriptionColumn

The non-extracted data for the respective record
based on the specified term.

This output column is added if a new
column name, not present in the input,
is specified as the Non-Extracted Data
column.

The name of the column is as entered
by you.

Note: For the Non-Extracted
Data column, you can select
an existing source column or
type a new column name.

Non-Extracted Data

94Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Output ValueDescriptionColumn

The extracted data for the respective record
based on the specified term.

This output column is added if a new
column name, not present in the input,
is specified as the Extracted Data
column.

The name of the column is as entered
by you.

Note: For the Extracted Data
column, you can select an
existing source column or type
a new column name.

Extracted Data

The possible value is Yes and No.Indicates whether the term has been
identified or not.

Advanced Transform Term
Identified

Using an Advanced Transformer MapReduce Job

1. Create an instance of DataNormalizationFactory, using its static method getInstance().
2. Provide the input and output details for the Advanced Transformer job by creating an instance

of AdvancedTransformerDetail specifying the ProcessType. The instance must use the
type MRProcessType on page 38.
a) Configure the advanced transfomer rules by creating an instance of

AdvancedTransformerConfiguration. Within this instance:
Add an instance of type AbstractAdvancedTransformerRules. This
AbstractAdvancedTransformerRules instance must be defined using one of these
classes: TableDataExtraction or RegularExpressionExtraction, corresponding to
the desired advanced transfomer rule category.

b) Set the details of the Reference Data path and location type by creating an instance of
ReferenceDataPath. See Enum ReferenceDataPathLocation on page 186.

c) Create an instance of AdvancedTransformerDetail, by passing an instance of type
JobConfig, and the AdvancedTransformerConfiguration and ReferenceDataPath
instances created earlier as the arguments to its constructor.
The JobConfig parameter must be an instance of type MRJobConfig on page 37.

d) Set the details of the input file using the inputPath field of the
AdvancedTransformerDetail instance.
For a text input file, create an instance of FilePath with the relevant details of the input file
by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

e) Set the details of the output file using the outputPath field of the
AdvancedTransformerDetail instance.

95Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

f) Set the name of the job using the jobName field of the AdvancedTransformerDetail
instance.

3. To create a MapReduce job, use the previously created instance of
DataNormalizationFactory to invoke its method createJob(). In this, pass the above
instance of AdvancedTransformerDetail as an argument.
The createJob() method returns a List of instances of ControlledJob.

4. Run the created job using an instance of JobControl.
5. To display the reporting counters post a successful MapReduce job run, use the previously

created instance of DataNormalizationFactory to invoke its method getCounters(),
passing the created job as an argument.

Using an Advanced Transformer Spark Job

1. Create an instance of DataNormalizationFactory, using its static method getInstance().
2. Provide the input and output details for the Advanced Transformer job by creating an instance

of AdvancedTransformerDetail specifying the ProcessType. The instance must use the
type SparkProcessType on page 38.
a) Configure the advanced transfomer rules by creating an instance of

AdvancedTransformerConfiguration. Within this instance:
Add an instance of type AbstractAdvancedTransformerRules. This
AbstractAdvancedTransformerRules instance must be defined using one of these
classes: TableDataExtraction or RegularExpressionExtraction, corresponding to
the desired advanced transfomer rule category.

b) Set the details of the Reference Data path and location type by creating an instance of
ReferenceDataPath. See Enum ReferenceDataPathLocation on page 186.

c) Create an instance of AdvancedTransformerDetail, by passing an instance of type
JobConfig, and the AdvancedTransformerConfiguration and ReferenceDataPath
instances created earlier as the arguments to its constructor.
The JobConfig parameter must be an instance of type SparkJobConfig on page 37.

d) Set the details of the input file using the inputPath field of the
AdvancedTransformerDetail instance.
For a text input file, create an instance of FilePath with the relevant details of the input file
by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

e) Set the details of the output file using the outputPath field of the
AdvancedTransformerDetail instance.

96Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

f) Set the name of the job using the jobName field of the AdvancedTransformerDetail
instance.

3. To create and run the Spark job, use the previously created instance of
DataNormalizationFactory to invoke its method runSparkJob(). In this, pass the above
instance of AdvancedTransformerDetail as an argument.
The runSparkJob() method runs the job and returns a Map of the reporting counters of the
job.

4. Display the counters to view the reporting statistics for the job.

Universal Addressing Module Jobs

Common Module API

UniversalAddressingDetail<T extends ProcessType>

Purpose
To specify the details of a Universal Addressing Module job.

UniversalAddressingFactory

Purpose
A singleton factory class to create instances of Universal Addressing Module jobs.

Validate Address

API Entities

UAMAddressingDetail<T extends ProcessType>

Purpose
To specify the details of a Validate Address job.

97Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

UniversalAddressEngineConfiguration

Purpose
To set various configurations like the reference data path and COBOL runtime path required to
create and run the Validate Address job.

These are one-time settings.

UAMAddressingFactory

Purpose
A singleton factory class to create instances of Validate Address jobs.

This instance is used to generate the reporting counters, and the CASS reports.

UniversalAddressGeneralConfiguration

Purpose
To set JVM configurations required to create and run the Validate Address job.

UniversalAddressValidateInputConfiguration

Purpose
To configure settings for the input to create and run the Validate Address job. This is a rule setting,
and has various options. These settings vary for every job.

Input Parameters

DescriptionParameter

To set various job run configurations:

1. DPV Database Path
2. Suite Link DB Path
3. EWS Database Path
4. RDI Database Path
5. Lacs Database Path
6. Reference Data Path
7. COBOL Runtime Path
8. Modules directory

Universal Address Engine
Configuration

98Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

Universal Address Validate Input
Configuration

99Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

To configure the input settings:

1. Output Standard Address
2. Output Address Elements
3. Output Postal Data
4. Output Parsed Input
5. Output Address Blocks
6. Output Formatted On Fail
7. Output Casing
8. Output Postal Code Separator
9. Output Multinational Characters
10. Perform DPV
11. Perform RDI
12. Perform ESM
13. Perform ASM
14. Perform EWS
15. Perform LACS Link
16. Perform LOT
17. Fail On CMRA Match
18. Extract Firm
19. Extract Urb
20. Output Report 3553
21. Output Report SERP
22. Output Report Summary
23. Output CASS Detail
24. Output Field Level Return Codes
25. Keep Multimatch
26. Maximum Results
27. Standard Address Format
28. Standard Address PMB Line
29. City Name Format
30. Vanity City Format Long
31. Output Country Format
32. Home Country
33. Street Matching Strictness
34. Firm Matching Strictness
35. Directional Matching Strictness
36. Dual Address Logic
37. DPV Successful Status Condition
38. Report List File Name
39. Report List Processor Name
40. Report List Number
41. Report Mailer Address
42. Report Mailer Name
43. Report Mailer City Line
44. Address Line Search On Fail
45. Output Street Alias

100Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

Output VeriMove Block46.
47. DPV Determine No Stat
48. DPV Determine Vacancy
49. Output Abbreviated Alias
50. Output Preferred Alias
51. Output Preferred City
52. Perform Suite Link
53. Suppress Zplus Phantom Carrier R777

To set JVM configurations:

1. DPV File Type
2. DPV Memory Model
3. Lacs Link Memory Model
4. Suite Link Memory Model

Universal Address General
Configuration

The Hadoop configurations for the job.

For a MapReduce job, the instance must be of type MRJobConfig on page 37.
For a Spark job, the instance must be of type SparkJobConfig on page 37.

Job Configurations

101Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the input text file on the Hadoop
platform.

Record Separator
The record separator used in the input file.

Field Separator
The separator used between any two
consecutive fields of a record, in the input file.

Text Qualifier
The character used to surround text values in a
delimited file.

Header Row Fields
An array of the header fields of the input file.

Skip First Row
Flag to indicate if the first row must be skipped
while reading the input file records.

This must be true in case the first row is a
header row.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the input ORC format file on the
Hadoop platform.

Common parameters:
Field Mappings

A map of key value pairs, with the existing
column names as the keys and the desired
output column names as the values.

Input File

102Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the output text file on the Hadoop
platform.

Field Separator
The separator used between any two
consecutive fields of a record, in the output file.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the output ORC format file on the
Hadoop platform.

Common parameters:
Overwrite

Flag to indicate if output file must overwrite any
existing file of same name.

Create Output Header
Flag to indicate if header file is to be created on
the Hadoop server or not.

Output File

The name of the job.Job Name

Flag to indicate if the output must be compressed.

Set this to true to compress the output.

Compress Output

103Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

The configurations to generate the CASS report. Invoke any of the overloaded
methodsgenerateCASSReport() using theUAMAddressingFactory instance.

The CASS reports are generated in PDF format.

The parameters are:

A Map of the counters to be included in the CASS report.Counters

The name of the job. This is included in the filename of the CASS
report.

Job Name

The directory where the created CASS report is placed. This is
an optional input value for the CASS reports.

The path must be on the cluster or client location depending
on whether the SDK job is running in a cluster environment or
on your client machine, respectively.

Path

Note: If the path is not specified, the new CASS report
is placed in the current working directory.

The type of CASS report to be generated. You can specify one
or more values from Enum UAMCASSReportType on page
196.

Report Type

CASS Reports

Output Columns

1. AdditionalInputData
2. AddressLine1
3. AddressLine2
4. AddressLine3
5. AddressLine4
6. AddressLine5
7. City
8. Country
9. FirmName
10. PostalCode
11. PostalCode.AddOn
12. PostalCode.Base
13. StateProvince
14. USUrbanName
15. AdditionalInputData
16. ApartmentLabel
17. ApartmentLabel2
18. ApartmentNumber
19. ApartmentNumber2

104Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

20. HouseNumber
21. LeadingDirectional
22. POBox
23. PrivateMailbox
24. PrivateMailbox.Type
25. RRHC
26. StateProvince
27. StreetName
28. StreetSuffix
29. TrailingDirectional
30. USUrbanName
31. ApartmentLabel.Input
32. ApartmentNumber.Input
33. City.Input
34. Country.Input
35. FirmName.Input
36. HouseNumber.Input
37. LeadingDirectional.Input
38. POBox.Input
39. PostalCode.Input
40. PrivateMailbox.Input
41. PrivateMailbox.Type.Input
42. RRHC.Input
43. StateProvince.Input
44. StreetName.Input
45. StreetSuffix.Input
46. TrailingDirectional.Input
47. USUrbanName.Input
48. PostalBarCode
49. USAltAddr
50. USBCCheckDigit
51. USCarrierRouteCode
52. USCongressionalDistrict
53. USCountyName
54. USFinanceNumber
55. USFIPSCountyNumber
56. USLACS
57. USLastLineNumber
58. AddressFormat
59. Confidence
60. CouldNotValidate

105Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

61. CountryLevel
62. MatchScore
63. MultimatchCount
64. MultipleMatches
65. ProcessedBy
66. RecordType
67. RecordType.Default
68. Status
69. Status.Code
70. Status.Description
71. AddressRecord.Result
72. ApartmentLabel.Result
73. ApartmentNumber.Result
74. City.Result
75. Country.Result
76. FirmName.Result
77. HouseNumber.Result
78. LeadingDirectional.Result
79. POBox.Result
80. PostalCode.Result
81. PostalCodeCity.Result
82. PostalCode.Source
83. PostalCode.Type
84. RRHC.Result
85. RRHC.Type
86. StateProvince.Result
87. Street.Result
88. StreetName.AbbreviatedAlias.Result
89. StreetName.Alias.Type
90. StreetName.PreferredAlias.Result
91. StreetName.Result
92. StreetSuffix.Result
93. TrailingDirectional.Result
94. USUrbanName.Result
95. USLOTCode
96. USLOTHex
97. USLOTSequence
98. USLACS.ReturnCode
99. RDI
100. DPV
101. CMRA

106Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

102. DPVFootnote
103. DPVVacant
104. DPVNoStat
105. SuiteLinkReturnCode
106. SuiteLinkMatchCode
107. SuiteLinkFidelity
108. VeriMoveDataBlock

Note: For the field descriptions, see the topic Validate Address in the Addressing Guide of
Spectrum™ Technology Platform.

Using a Validate Address MapReduce Job

Attention: Before creating and running the first Validate Address job, ensure the Acushare service
is running. For steps, see Running Acushare Service on page 11.

1. Create an instance of UAMAddressingFactory, using its static method getInstance().
2. Provide the input and output details for the Validate Address job by creating an instance of

UAMAddressingDetail specifying the ProcessType. The instance must use the type
MRProcessType on page 38. For this, the steps are:
a) To configure the input settings for the job, create an instance of

UniversalAddressValidateInputConfiguration.
Set the values of the various required fields of this instance, using the enums Enum
PreferredCity on page 194, Enum CasingType on page 193, Enum CityNameFormat on
page 193, Enum OutputCountryFormat on page 193, Enum StandardAddressFormat on
page 193,EnumStandardAddressPMBLine on page 194,EnumStreetMatchingStrictness
on page 194, Enum FirmMatchingStrictness on page 194, Enum
DirectionalMatchingStrictness on page 194, Enum DualAddressLogic on page 193, and
Enum DPVSuccessStatusCondition on page 195 where applicable.

Important: To run Validate Address in the CASS Certified™ mode, set the fields
outputReport3553, outputCASSDetail, and outputReportSummary of this instance
to true. The CASS reports contain valid content only when the job is run in the CASS
Certified™ mode. Else, blank report PDFs are generated.

b) Set the details of the Reference Data path by creating an instance of
LocalReferenceDataPath.

c) To configure the various job run settings, create an instance of
UAMUSAddressingEngineConfiguration by passing the LocalReferenceDataPath
instance created above, and theCOBOL Runtime path andmodules directory path as String
values, as arguments to its constructor.
Once the UAMUSAddressingEngineConfiguration instance is created, set the values
for its various required fields.

d) To configure JVM settings, create an instance of
UniversalAddressGeneralConfiguration.

107Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Use the enums Enum DPVFileType on page 194, Enum DPVMemoryModel on page 195,
Enum LacsLinkMemoryModel on page 195, and Enum SuiteLinkMemoryModel on page
195.

e) Create an instance of UAMAddressingDetail, by passing an instance of type JobConfig,
and the instances of UAMUSAddressingEngineConfiguration,
UniversalAddressGeneralConfiguration, and
UniversalAddressValidateInputConfiguration created above as the arguments to
its constructor.
The JobConfig parameter must be an instance of type MRJobConfig on page 37.

1. Set the details of the input file using the inputPath field of the UAMAddressingDetail
instance.

For a text input file, create an instance of FilePath with the relevant details of the input
file by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

2. Set the details of the output file using the outputPath field of the UAMAddressingDetail
instance.

For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

3. Set the name of the job using the jobName field of the UAMAddressingDetail instance.
4. Set the compressOutput flag of the UAMAddressingDetail instance to true to

compress the output of the job.

3. To create a MapReduce job, use the previously created instance of UAMAddressingFactory
to invoke its method createJob(). In this, pass the above instance of UAMAddressingDetail
as an argument.
The createJob() method returns a List of instances of ControlledJob.

4. Run the created job using an instance of JobControl.
5. To display the reporting counters post a successful job run, use the previously created instance

of UAMAddressingFactory to invoke its method getCounters(), passing the created job
as an argument.
A Map of counters is received.

6. To generate the CASS reports after a successful job run, use the previously created instance of
UAMAddressingFactory to invoke the method generateCASSReport(). You can invoke
any of the overloaded versions of the method generateCASSReport().
Depending on which generateCASSReport() method signature is used, pass as arguments
the Map of reporting counters derived in the previous step, the jobName, the path where the
generated CASS report must be stored, and the required reportType to be created.

The pathmust be on the cluster or client location depending on whether the SDK job is running
in a cluster environment or on your client machine, respectively.

108Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Note: If the path is not specified, the new CASS report is placed in the current working
directory.

The reportType parameter must have values from the EnumUAMCASSReportType on page
196. You can specify one or more report types in this parameter.

Using a Validate Address Spark Job

Attention: Before creating and running the first Validate Address job, ensure the Acushare service
is running. For steps, see Running Acushare Service on page 11.

1. Create an instance of UAMAddressingFactory, using its static method getInstance().
2. Provide the input and output details for the Validate Address job by creating an instance of

UAMAddressingDetail specifying the ProcessType. The instance must use the type
SparkProcessType on page 38. For this, the steps are:
a) To configure the input settings for the job, create an instance of

UniversalAddressValidateInputConfiguration.
Set the values of the various required fields of this instance, using the enums Enum
PreferredCity on page 194, Enum CasingType on page 193, Enum CityNameFormat on
page 193, Enum OutputCountryFormat on page 193, Enum StandardAddressFormat on
page 193,EnumStandardAddressPMBLine on page 194,EnumStreetMatchingStrictness
on page 194, Enum FirmMatchingStrictness on page 194, Enum
DirectionalMatchingStrictness on page 194, Enum DualAddressLogic on page 193, and
Enum DPVSuccessStatusCondition on page 195 where applicable.

Important: To run Validate Address in the CASS Certified™ mode, set the fields
outputReport3553, outputCASSDetail, and outputReportSummary of this instance
to true. The CASS reports contain valid content only when the job is run in the CASS
Certified™ mode. Else, blank report PDFs are generated.

b) Set the details of the Reference Data path by creating an instance of
LocalReferenceDataPath.

c) To configure the various job run settings, create an instance of
UAMUSAddressingEngineConfiguration by passing the LocalReferenceDataPath
instance created above, and theCOBOL Runtime path andmodules directory path as String
values, as arguments to its constructor.
Once the UAMUSAddressingEngineConfiguration instance is created, set the values
for its various required fields.

d) To configure JVM settings, create an instance of
UniversalAddressGeneralConfiguration.
Use the enums Enum DPVFileType on page 194, Enum DPVMemoryModel on page 195,
Enum LacsLinkMemoryModel on page 195, and Enum SuiteLinkMemoryModel on page
195.

109Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

e) Create an instance of UAMAddressingDetail, by passing an instance of type JobConfig,
and the instances of UAMUSAddressingEngineConfiguration,
UniversalAddressGeneralConfiguration, and
UniversalAddressValidateInputConfiguration created above as the arguments to
its constructor.
The JobConfig parameter must be an instance of type SparkJobConfig on page 37.

1. Set the details of the input file using the inputPath field of the UAMAddressingDetail
instance.

For a text input file, create an instance of FilePath with the relevant details of the input
file by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

2. Set the details of the output file using the outputPath field of the UAMAddressingDetail
instance.

For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

3. Set the name of the job using the jobName field of the UAMAddressingDetail instance.
4. Set the compressOutput flag of the UAMAddressingDetail instance to true to

compress the output of the job.

3. To create and run the Spark job, use the previously created instance of UAMAddressingFactory
to invoke its method runSparkJob(). In this, pass the above instance of
UAMAddressingDetail as an argument.
The runSparkJob() method runs the job and returns a Map of the reporting counters of the
job.

4. To display the reporting counters post a successful job run, use the previously created instance
of UAMAddressingFactory to invoke its method getCounters(), passing the created job
as an argument.
A Map of counters is received.

5. To generate the CASS reports after a successful job run, use the previously created instance of
UAMAddressingFactory to invoke the method generateCASSReport(). You can invoke
any of the overloaded versions of the method generateCASSReport().
Depending on which generateCASSReport() method signature is used, pass as arguments
the Map of reporting counters derived in the previous step, the jobName, the path where the
generated CASS report must be stored, and the required reportType to be created.

The pathmust be on the cluster or client location depending on whether the SDK job is running
in a cluster environment or on your client machine, respectively.

Note: If the path is not specified, the new CASS report is placed in the current working
directory.

110Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

The reportType parameter must have values from the EnumUAMCASSReportType on page
196. You can specify one or more report types in this parameter.

Validate Address Global

API Entities

GlobalAddressingDetail<T extends ProcessType>

Purpose
To specify the details of a Validate Address Global job.

GlobalAddressingEngineConfiguration

Purpose
To set database configurations required to create and run the Validate Address Global job.

GlobalAddressingFactory

Purpose
A singleton factory class to create instances of Validate Address Global jobs.

GlobalAddressingGeneralConfiguration

Purpose
To set JVM configurations required to create and run the Validate Address Global job.

GlobalAddressingInputConfiguration

Purpose
To configure settings for the input to create and run the Validate Address Global job.

Input Parameters

DescriptionParameter

To set database configurations:

1. Database Type
2. Preloading Type
3. Reference Data Path
4. If all countries are supported. If not, list of supported Countries

Validate Address Global Engine
Configuration

111Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

To configure these settings for the input:

1. State Province Type in result
2. Matching Scope in process
3. Force Country ISO3 in input
4. Default Country ISO3 in input
5. Format Delimiter in input
6. Format Delimiter in result
7. Include inputs in result
8. Country Type in result
9. Optimization Level of process
10. Preferred Language of result
11. Mode of process
12. Preferred Script in result
13. Maximum Results
14. Casing of result

Validate Address Global Input
Configuration

To set JVM configurations:

1. Cache Size
2. Maximum Thread Count
3. Maximum Address Object Count
4. Ranges to expand
5. Flexible Range Expansion
6. Enable Transaction Logging
7. Maximum Memory Usage in MB

Validate Address Global General
Configuration

To unlock the data in the database.Unlock Code

To specify the Reference Data path details.

Note: For the UAM jobs, reference data must be placed only on local
data nodes in the cluster.

Reference Data Path

The Hadoop configurations for the job.

For a MapReduce job, the instance must be of type MRJobConfig on page 37.
For a Spark job, the instance must be of type SparkJobConfig on page 37.

Job Configurations

112Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the input text file on the Hadoop
platform.

Record Separator
The record separator used in the input file.

Field Separator
The separator used between any two
consecutive fields of a record, in the input file.

Text Qualifier
The character used to surround text values in a
delimited file.

Header Row Fields
An array of the header fields of the input file.

Skip First Row
Flag to indicate if the first row must be skipped
while reading the input file records.

This must be true in case the first row is a
header row.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the input ORC format file on the
Hadoop platform.

Common parameters:
Field Mappings

A map of key value pairs, with the existing
column names as the keys and the desired
output column names as the values.

Input File

113Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the output text file on the Hadoop
platform.

Field Separator
The separator used between any two
consecutive fields of a record, in the output file.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the output ORC format file on the
Hadoop platform.

Common parameters:
Overwrite

Flag to indicate if output file must overwrite any
existing file of same name.

Create Output Header
Flag to indicate if header file is to be created on
the Hadoop server or not.

Output File

The name of the job.Job Name

Output Columns

Address Data

1. AddressBlock1-9
2. AddressLine1-6
3. AdministrativeDistrict
4. ApartmentLabel
5. ApartmentNumber
6. BlockName
7. BuildingName
8. City
9. City.AddInfo
10. City.SortingCode
11. Contact
12. Country
13. County

114Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

14. FirmName
15. Floor
16. HouseNumber
17. LastLine
18. LeadingDirectional
19. Locality
20. POBox
21. PostalCode
22. PostalCode.AddOn
23. PostalCode.Base
24. Room
25. SecondaryStreet
26. StateProvince
27. StreetName
28. StreetSuffix
29. SubBuilding
30. Suburb
31. Territory
32. TrailingDirectional

Original Input Data

1. AddressLine1.Input
2. AddressLine2.Input
3. AddressLine3.Input
4. AddressLine4.Input
5. AddressLine5.Input
6. AddressLine6.Input
7. City.Input
8. StateProvince.Input
9. PostalCode.Input
10. Contact.Input
11. Country.Input
12. FirmName.Input
13. Street.Input
14. Number.Input
15. Building.Input
16. SubBuilding.Input
17. DeliveryService.Input

Attention: The input fields AddressLine2.Input, AddressLine3.Input,
AddressLine4.Input, AddressLine5.Input, and AddressLine6.Input are included in the
output only if the resultIncludeInputs field of the class

115Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

GlobalAddressingInputConfiguration is set to true. Else, only those
AddressLineX.input fields are included in output which are part of the input.

Result Codes

1. AddressType
2. Confidence
3. CountOverflow
4. ElementInputStatus
5. ElementRelevance
6. ElementResultStatus
7. MailabilityScore
8. ModeUsed
9. MultimatchCount
10. ProcessStatus
11. Status
12. Status.Code
13. Status.Description

Note: For the field descriptions, see the Validate Address Global topic of the Addressing
Guide of Spectrum™ Technology Platform.

Using a Validate Address Global MapReduce Job

1. Create an instance of GlobalAddressingFactory, using its static method getInstance().
2. Provide the input and output details for the Validate Address Global job by creating an instance

of GlobalAddressingDetail specifying the ProcessType. The instance must use the type
MRProcessType on page 38. For this, the steps are:
a) Configure the JVM initialization settings by creating an instance of

GlobalAddressingGeneralConfiguration.
Use the enums Enum CacheSize on page 192, Enum RangesToExpand on page 192, and
Enum FlexibleRangeExpansion on page 192.

b) Set the details of the Reference Data path by creating an instance of
LocalReferenceDataPath.

c) Configure the necessary database settings by creating an instance of
GlobalAddressingEngineConfiguration by passing the above
LocalReferenceDataPath instance as an argument.

1. Set the preloading type in this instance using the enum Enum PreloadingType on page
189.

2. Set the database type using the Enum DatabaseType on page 188.
3. Set the supported countries using the Enum CountryCodes on page 189.

116Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

4. If all countries are supported, set the isAllCountries attribute to true. Else, specify the
comma-separated list of Enum CountryCodes on page 189 values in the
supportedCountries String value.

d) Configure the input settings by creating an instance of
GlobalAddressingInputConfiguration.
To set the values of the various fields of this instance, use the enums Enum CountryCodes
on page 189,EnumStateProvinceType on page 189,EnumCountryType on page 189,Enum
PreferredScript on page 190,EnumPreferredLanguage on page 190,EnumCasing on page
190, Enum OptimizationLevel on page 190, Enum Mode on page 190, and Enum
MatchingScope on page 191 as applicable.

e) Set the unlock key for the data as a String value in a List.
f) Create an instance of GlobalAddressingDetail, by passing an instance of type

JobConfig, the List of unlock code values, the
GlobalAddressingEngineConfiguration instance, and the
GlobalAddressingInputConfiguration instance created earlier as the arguments to
its constructor.
The JobConfig parameter must be an instance of type MRJobConfig on page 37.

1. Set the JVM initialization configurations by setting the generalConfiguration field of
the GlobalAddressingDetail instance to the
GlobalAddressingGeneralConfiguration instance created above.

2. Set the details of the input file using the inputPath field of the
GlobalAddressingDetail instance.

For a text input file, create an instance of FilePath with the relevant details of the input
file by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

3. Set the details of the output file using the outputPath field of the
GlobalAddressingDetail instance.

For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

4. Set the name of the job using the jobName field of the GlobalAddressingDetail
instance.

3. To create aMapReduce job, use the previously created instance of GlobalAddressingFactory
to invoke its method createJob(). In this, pass the above instance of
GlobalAddressingDetail as an argument.
The createJob() method returns a List of instances of ControlledJob.

4. Run the created job using an instance of JobControl.

117Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

5. To display the reporting counters post a successful MapReduce job run, use the previously
created instance of GlobalAddressingFactory to invoke its method getCounters(),
passing the created job as an argument.

Using a Validate Address Global Spark Job

1. Create an instance of GlobalAddressingFactory, using its static method getInstance().
2. Provide the input and output details for the Validate Address Global job by creating an instance

of GlobalAddressingDetail specifying the ProcessType. The instance must use the type
SparkProcessType on page 38. For this, the steps are:
a) Configure the JVM initialization settings by creating an instance of

GlobalAddressingGeneralConfiguration.
Use the enums Enum CacheSize on page 192, Enum RangesToExpand on page 192, and
Enum FlexibleRangeExpansion on page 192.

b) Set the details of the Reference Data path by creating an instance of
LocalReferenceDataPath.

c) Configure the necessary database settings by creating an instance of
GlobalAddressingEngineConfiguration by passing the above
LocalReferenceDataPath instance as an argument.

1. Set the preloading type in this instance using the enum Enum PreloadingType on page
189.

2. Set the database type using the Enum DatabaseType on page 188.
3. Set the supported countries using the Enum CountryCodes on page 189.
4. If all countries are supported, set the isAllCountries attribute to true. Else, specify the

comma-separated list of Enum CountryCodes on page 189 values in the
supportedCountries String value.

d) Configure the input settings by creating an instance of
GlobalAddressingInputConfiguration.
To set the values of the various fields of this instance, use the enums Enum CountryCodes
on page 189,EnumStateProvinceType on page 189,EnumCountryType on page 189,Enum
PreferredScript on page 190,EnumPreferredLanguage on page 190,EnumCasing on page
190, Enum OptimizationLevel on page 190, Enum Mode on page 190, and Enum
MatchingScope on page 191 as applicable.

e) Set the unlock key for the data as a String value in a List.
f) Create an instance of GlobalAddressingDetail, by passing an instance of type

JobConfig, the List of unlock code values, the
GlobalAddressingEngineConfiguration instance, and the
GlobalAddressingInputConfiguration instance created earlier as the arguments to
its constructor.
The JobConfig parameter must be an instance of type SparkJobConfig on page 37.

118Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

1. Set the JVM initialization configurations by setting the generalConfiguration field of
the GlobalAddressingDetail instance to the
GlobalAddressingGeneralConfiguration instance created above.

2. Set the details of the input file using the inputPath field of the
GlobalAddressingDetail instance.

For a text input file, create an instance of FilePath with the relevant details of the input
file by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

3. Set the details of the output file using the outputPath field of the
GlobalAddressingDetail instance.

For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

4. Set the name of the job using the jobName field of the GlobalAddressingDetail
instance.

3. To create and run the Spark job, use the previously created instance of
GlobalAddressingFactory to invoke its method runSparkJob(). In this, pass the above
instance of GlobalAddressingDetail as an argument.
The runSparkJob() method runs the job and returns a Map of the reporting counters of the
job.

4. Display the counters to view the reporting statistics for the job.

Validate Address Loqate

API Entities

LoqateAddressingDetail<T extends ProcessType>

Purpose
To specify the details of a Validate Address Loqate job.

LoqateAddressingEngineConfiguration

Purpose
To set database configurations required to create and run the Validate Address Loqate job.

LoqateAddressingFactory

Purpose
A singleton factory class to create instances of Validate Address Loqate jobs.

119Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

LoqateAddressingGeneralConfiguration

Purpose
To set JVM configurations required to create and run the Validate Address Loqate job.

LoqateAddressingValidateConfiguration

Purpose
To configure settings for the input to create and run the Validate Address Loqate job.

Input Parameters

DescriptionParameter

To set configurations for performing the validations:

1. Verbose
2. Tool Info
3. Output Address Format
4. Log Input
5. Log Output
6. Log File Name
7. Match Score Absolute Threshold
8. Match Score Threshold Factor
9. Postal Code Max Results
10. Strict Reference Match

Validate Address Loqate Engine
Configuration

120Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

To configure these settings for the input:

1. Include Standard Address
2. Include Matched Address Elements
3. Standardized Input Address Elements
4. Return Address Data Blocks
5. Output Casing
6. Include Result Codes for Individual Fields
7. Return Multiple Addresses
8. Failed On Multi Match Found
9. Multiple Address Count
10. Country Format
11. Default Country
12. Script Alphabet
13. Return Geocoded Address Fields
14. Acceptance Level
15. Minimum Match Score
16. Format Data Using AMAS Conventions
17. Is Duplicate Handling
18. Single Field Duplicate Handling
19. Multi Field Duplicate Handling
20. Non Standard Field Duplicate Handling
21. Output Field Duplicate Handling

Validate Address Loqate Validate
Configuration

To set JVM configurations:

1. Maximum Idle Objects
2. Minimum Idle Objects
3. Maximum Active Objects
4. Maximum Wait Time
5. Action When Exhausted
6. Test on Borrow
7. Test on Return
8. Test While Idle
9. Time Between Eviction Runs in Milliseconds
10. Number of Tests Per Eviction Run
11. Min Evictable Idle Time in Milliseconds

Validate Address Loqate General
Configuration

To specify the Reference Data path details.

Note: For the UAM jobs, reference data must be placed only on local
data nodes in the cluster.

Reference Data Path

121Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

The Hadoop configurations for the job.

For a MapReduce job, the instance must be of type MRJobConfig on page 37.
For a Spark job, the instance must be of type SparkJobConfig on page 37.

Job Configurations

For text files:
File Path

The path of the input text file on the Hadoop
platform.

Record Separator
The record separator used in the input file.

Field Separator
The separator used between any two
consecutive fields of a record, in the input file.

Text Qualifier
The character used to surround text values in a
delimited file.

Header Row Fields
An array of the header fields of the input file.

Skip First Row
Flag to indicate if the first row must be skipped
while reading the input file records.

This must be true in case the first row is a
header row.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the input ORC format file on the
Hadoop platform.

Common parameters:
Field Mappings

A map of key value pairs, with the existing
column names as the keys and the desired
output column names as the values.

Input File

122Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the output text file on the Hadoop
platform.

Field Separator
The separator used between any two
consecutive fields of a record, in the output file.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the output ORC format file on the
Hadoop platform.

Common parameters:
Overwrite

Flag to indicate if output file must overwrite any
existing file of same name.

Create Output Header
Flag to indicate if header file is to be created on
the Hadoop server or not.

Output File

The name of the job.Job Name

Output Columns

1. AdditionalInputData
2. AddressLine1-4
3. City
4. Country
5. FirmName
6. PostalCode
7. PostalCode.AddOn
8. PostalCode.Base
9. StateProvince
10. AddressBlock1-9
11. ApartmentLabel
12. ApartmentNumber
13. ApartmentNumber2
14. Building

123Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

15. City
16. Country
17. County *
18. FirmName
19. HouseNumber
20. LeadingDirectional
21. POBox
22. PostalCode
23. Principality *
24. StateProvince
25. StreetAlias
26. StreetName
27. StreetSuffix
28. Subcity *
29. Substreet *
30. TrailingDirectional
31. ApartmentLabel.Input
32. ApartmentNumber.Input
33. City.Input
34. Country.Input
35. County.Input *
36. FirmName.Input
37. HouseNumber.Input
38. LeadingDirectional.Input
39. POBox.Input
40. PostalCode.Input
41. Principality.Input *
42. StateProvince.Input
43. StreetAlias.Input
44. StreetName.Input
45. StreetSuffix.Input
46. Subcity.Input *
47. Substreet.Input *
48. TrailingDirectional.Input
49. Geocode.MatchCode
50. Latitude
51. Longitude
52. SearchDistance
53. Confidence
54. CouldNotValidate
55. MatchScore

124Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

56. ProcessedBy
57. Status
58. Status.Code
59. Status.Description
60. ApartmentLabel.Result
61. ApartmentNumber.Result
62. City.Result
63. Country.Result
64. County.Result *
65. FirmName.Result
66. HouseNumber.Result
67. LeadingDirectional.Result
68. POBox.Result
69. PostalCode.Result
70. PostalCode.Type
71. Principality.Result *
72. StateProvince.Result
73. StreetAlias.Result
74. StreetName.Result
75. StreetSuffix.Result
76. Subcity.Result *
77. Substreet.Result *
78. TrailingDirectional.Result
79. Barcode
80. DPID
81. FloorNumber
82. FloorType
83. PostalBoxNum

*This is a subfield and may not contain data.

Table 1: City/Street/Postal Code Centroid Match Codes

Match CodeElement

P4Address Point

I4Address Point Interpolated

A4/P3Street Centroid

A3/P2/A2Postal Code/City Centroid

125Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

Note: For the field descriptions, see the Validate Address Loqate topic of the Addressing
Guide of Spectrum™ Technology Platform.

Using a Validate Address Loqate MapReduce Job

1. Create an instance of LoqateAddressingFactory, using its static method getInstance().
2. Provide the input and output details for the Validate Address Loqate job by creating an instance

of LoqateAddressingDetail specifying the ProcessType. The instance must use the type
MRProcessType on page 38. For this, the steps are:
a) Configure the JVM initialization settings by creating an instance of

LoqateAddressingGeneralConfiguration.
Use the enum Enum ExhaustedAction on page 191.

b) Configure the necessary database settings by creating an instance of
LoqateAddressingEngineConfiguration and set the various fields.

c) Configure the address validation settings by creating an instance of
LoqateAddressingValidateConfiguration.
To set the values of the various fields of this instance, use the enums EnumAcceptanceLevel
on page 191, Enum CountryCodes on page 189, EnumOutputCasing on page 192, Enum
CountryFormat on page 192, and Enum ScriptAlphabet on page 192.

d) Set the details of the Reference Data path by creating an instance of
LocalReferenceDataPath.

e) Create an instance of LoqateAddressingDetail, by passing an instance of type
JobConfig, the LocalReferenceDataPath instance, and the
LoqateAddressingValidateConfiguration instance created earlier as the arguments
to its constructor.
The JobConfig parameter must be an instance of type MRJobConfig on page 37.

1. Set the details of the input file using the inputPath field of the
LoqateAddressingDetail instance.

For a text input file, create an instance of FilePath with the relevant details of the input
file by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

2. Set the details of the output file using the outputPath field of the
LoqateAddressingDetail instance.

For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

3. Set the name of the job using the jobName field of the LoqateAddressingDetail
instance.

126Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

3. To create aMapReduce job, use the previously created instance of LoqateAddressingFactory
to invoke its method createJob(). In this, pass the above instance of
LoqateAddressingDetail as an argument.
The createJob() method returns a List of instances of ControlledJob.

4. Run the created job using an instance of JobControl.
5. To display the reporting counters post a successful MapReduce job run, use the previously

created instance of LoqateAddressingFactory to invoke its method getCounters(),
passing the created job as an argument.

Using a Validate Address Loqate Spark Job

1. Create an instance of LoqateAddressingFactory, using its static method getInstance().
2. Provide the input and output details for the Validate Address Loqate job by creating an instance

of LoqateAddressingDetail specifying the ProcessType. The instance must use the type
SparkProcessType on page 38. For this, the steps are:
a) Configure the JVM initialization settings by creating an instance of

LoqateAddressingGeneralConfiguration.
Use the enum Enum ExhaustedAction on page 191.

b) Configure the necessary database settings by creating an instance of
LoqateAddressingEngineConfiguration and set the various fields.

c) Configure the address validation settings by creating an instance of
LoqateAddressingValidateConfiguration.
To set the values of the various fields of this instance, use the enums EnumAcceptanceLevel
on page 191, Enum CountryCodes on page 189, EnumOutputCasing on page 192, Enum
CountryFormat on page 192, and Enum ScriptAlphabet on page 192.

d) Set the details of the Reference Data path by creating an instance of
LocalReferenceDataPath.

e) Create an instance of LoqateAddressingDetail, by passing an instance of type
JobConfig, the LocalReferenceDataPath instance, and the
LoqateAddressingValidateConfiguration instance created earlier as the arguments
to its constructor.
The JobConfig parameter must be an instance of type SparkJobConfig on page 37.

1. Set the details of the input file using the inputPath field of the
LoqateAddressingDetail instance.

For a text input file, create an instance of FilePath with the relevant details of the input
file by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

2. Set the details of the output file using the outputPath field of the
LoqateAddressingDetail instance.

127Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

3. Set the name of the job using the jobName field of the LoqateAddressingDetail
instance.

3. To create and run the Spark job, use the previously created instance of
LoqateAddressingFactory to invoke its method runSparkJob(). In this, pass the above
instance of LoqateAddressingDetail as an argument.
The runSparkJob() method runs the job and returns a Map of the reporting counters of the
job.

4. Display the counters to view the reporting statistics for the job.

Universal Name Module Jobs

Common Module API

UniversalNameDetail<T extends ProcessType>

Purpose
To specify the details of a Universal Name Module job.

UniversalNameFactory

Purpose
A singleton factory class to create instances of Universal Name Module jobs.

Open Name Parser

API Entities

OpenNameParserDetail

Purpose
To specify details of an Open Name Parser job.

128Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

OpenNameParserConfiguration

Purpose
To break down personal and business names and other terms in the name data field into their
component parts.

Input Parameters

DescriptionParameter

To break down personal and business names and other terms in the name data field
into their component parts.

Open Name Parser
Configuration

To specify the Reference Data path details.Reference Data Path

The Hadoop configurations for the job.

For a MapReduce job, the instance must be of type MRJobConfig on page 37. For a
Spark job, the instance must be of type SparkJobConfig on page 37.

Job Configurations

129Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the input text file on the Hadoop platform.

Record Separator
The record separator used in the input file.

Field Separator
The separator used between any two consecutive
fields of a record, in the input file.

Text Qualifier
The character used to surround text values in a
delimited file.

Header Row Fields
An array of the header fields of the input file.

Skip First Row
Flag to indicate if the first row must be skipped while
reading the input file records.

This must be true in case the first row is a header
row.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the input ORC format file on the Hadoop
platform.

Common parameters:
Field Mappings

A map of key value pairs, with the existing column
names as the keys and the desired output column
names as the values.

Input File

130Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionParameter

For text files:
File Path

The path of the output text file on the Hadoop
platform.

Field Separator
The separator used between any two consecutive
fields of a record, in the output file.

Attention: Invoke the appropriate constructor of FilePath.

For ORC format files:
ORC File Path

The path of the output ORC format file on the Hadoop
platform.

Common parameters:
Overwrite

Flag to indicate if output file must overwrite any
existing file of same name.

Create Output Header
Flag to indicate if header file is to be created on the
Hadoop server or not.

Output File

The name of the job.Job Name

Output Columns

In addition to the input columns, the following columns are added while generating the output of an
Open Name Parser job:

DescriptionFormat

An account description that is part of the name. For example, in "Mary
Jones Account # 12345", the account description is "Account#12345".

StringAccountDescription

Fields Related to Names of Companies

Indicates that the name of a firm contains a conjunction such as "d/b/a"
(doing business as), "o/a" (operating as), and "t/a" (trading as).

StringFirmConjunction

131Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionFormat

The name of a company. For example, "Pitney Bowes".StringFirmName

The corporate suffix. For example, "Co." and "Inc."StringFirmSuffix

Indicates that the name is a firm rather than an individual. Values are
true or false.

StringIsFirm

Fields Related to Names of
Individual People

Indicates that the name contains a conjunction such as "and", "or", or
"&".

StringConjunction

The culture codes contained in the input data.StringCultureCode

Identifies the culture-specific grammar that was used to parse the data.

Global culture (default).Null (empty)

German.de

Spanish.es

Japanese.ja

StringCultureCodeUsedToParse

The first name of a person.StringFirstName

A person's general/professional suffix. For example, MD or PhD.StringGeneralSuffix

Indicates whether an output record was parsed. Values are true or false.StringIsParsed

Indicates whether the name is an individual rather than a firm. Values
are true or false.

StringIsPersonal

132Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionFormat

Indicates whether the input name is in reverse order. Values are true
or false.

StringIsReverseOrder

The last name of a person. Includes the paternal last name.StringLastName

Non-name information that appears before a name.StringLeadingData

A person's maturity/generational suffix. For example, Jr. or Sr.StringMaturitySuffix

The middle name of a person.StringMiddleName

The personal or firm name that was provided in the input.StringName.

Indicates the average score of known and unknown tokens for each
name. The value of NameScore will be between 0 and 100, as defined
in the parsing grammar. 0 is returned when no matches are returned.

StringNameScore

In Spanish parsing grammar, the surname of a person's mother.StringSecondaryLastName

Information that appears before a name, such as "Mr.", "Mrs.", or "Dr."StringTitleOfRespect

Non-name information that appears after a name.StringTrailingData

Fields Related to Conjoined
Names

Indicates that a second, conjoined name contains a conjunction such
as "and", "or", or "&".

StringConjunction2

Indicates that a third, conjoined name contains a conjunction such as
"and", "or", or "&".

StringConjunction3

133Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionFormat

The name of a second, conjoined company. For example, Baltimore
Gas & Electric dba Constellation Energy.

StringFirmName2

The suffix of a second, conjoined company.StringFirmSuffix2

The first name of a second, conjoined name.StringFirstName2

The first name of a third, conjoined name.StringFirstName3

The general/professional suffix for a second, conjoined name. For
example, MD or PhD.

StringGeneralSuffix2

The general/professional suffix for a third, conjoined name. For example,
MD or PhD.

StringGeneralSuffix3

Indicates that the input name is conjoined. An example of a conjoined
name is "John and Jane Smith." Values are true or false.

StringIsConjoined

The last name of a second, conjoined name.StringLastName2

The last name of a third, conjoined name.StringLastName3

The maturity/generational suffix for a second, conjoined name. For
example, Jr. or Sr.

StringMaturitySuffix2

Thematurity/generational suffix for a third, conjoined name. For example,
Jr. or Sr.

StringMaturitySuffix3

The middle name of a second, conjoined name.StringMiddleName2

The middle name of a third, conjoined name.StringMiddleName3

134Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

DescriptionFormat

Information that appears before a second, conjoined name, such as
"Mr.", "Mrs.", or "Dr."

StringTitleOfRespect2

Information that appears before a third, conjoined name, such as "Mr.",
"Mrs.", or "Dr."

StringTitleOfRespect3

Using an Open Name Parser MapReduce Job

1. Create an instance of UniversalNameFactory, using its static method getInstance().
2. Provide the input and output details for the Open Name Parser job by creating an instance of

OpenNameParserDetail specifying the ProcessType. The instance must use the type
MRProcessType on page 38.
a) Configure the open name parser rules by creating an instance of

OpenNameParserConfiguration.
b) Set the details of the Reference Data path and location type by creating an instance of

ReferenceDataPath. See Enum ReferenceDataPathLocation on page 186.
c) Create an instance of OpenNameParserDetail, by passing an instance of type JobConfig,

and the OpenNameParserConfiguration and ReferenceDataPath instances created
earlier as the arguments to its constructor.
The JobConfig parameter must be an instance of type MRJobConfig on page 37.

d) Set the details of the input file using the inputPath field of the OpenNameParserDetail
instance.
For a text input file, create an instance of FilePath with the relevant details of the input file
by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

e) Set the details of the output file using the outputPath field of the OpenNameParserDetail
instance.
For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

f) Set the name of the job using the jobName field of the OpenNameParserDetail instance.

3. To create a MapReduce job, use the previously created instance of UniversalNameFactory
to invoke its method createJob(). In this, pass the above instance of OpenNameParserDetail
as an argument.
The createJob() method returns a List of instances of ControlledJob.

4. Run the created job using an instance of JobControl.

135Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

5. To display the reporting counters post a successful MapReduce job run, use the previously
created instance of UniversalNameFactory to invoke its method getCounters(), passing
the created job as an argument.

Using an Open Name Parser Spark Job

1. Create an instance of UniversalNameFactory, using its static method getInstance().
2. Provide the input and output details for the Open Name Parser job by creating an instance of

OpenNameParserDetail specifying the ProcessType. The instance must use the type
SparkProcessType on page 38.
a) Configure the open name parser rules by creating an instance of

OpenNameParserConfiguration.
b) Set the details of the Reference Data path and location type by creating an instance of

ReferenceDataPath. See Enum ReferenceDataPathLocation on page 186.
c) Create an instance of OpenNameParserDetail, by passing an instance of type JobConfig,

and the OpenNameParserConfiguration and ReferenceDataPath instances created
earlier as the arguments to its constructor.
The JobConfig parameter must be an instance of type SparkJobConfig on page 37.

d) Set the details of the input file using the inputPath field of the OpenNameParserDetail
instance.
For a text input file, create an instance of FilePath with the relevant details of the input file
by invoking the appropriate constructor. For an ORC input file, create an instance of
OrcFilePath with the path of the ORC input file as the argument.

e) Set the details of the output file using the outputPath field of the OpenNameParserDetail
instance.
For a text output file, create an instance of FilePath with the relevant details of the output
file by invoking the appropriate constructor. For an ORC output file, create an instance of
OrcFilePath with the path of the ORC output file as the argument.

f) Set the name of the job using the jobName field of the OpenNameParserDetail instance.

3. To create and run the Spark job, use the previously created instance of UniversalNameFactory
to invoke its method runSparkJob(). In this, pass the above instance of
OpenNameParserDetail as an argument.
The runSparkJob() method runs the job and returns a Map of the reporting counters of the
job.

4. Display the counters to view the reporting statistics for the job.

136Big Data Quality SDK 12.0 Big Data Quality SDK Guide

The Java API

5 - Hive User-Defined
Functions

In this section

Introduction 138
Advanced Matching Module Functions 145
Data Normalization Module Functions 165
Universal Addressing Module Functions 169
Universal Name Module Functions 179

Introduction

Apache Hive provides User Defined Functions (UDF). A UDF can be defined to perform required
actions and achieve desired objectives.

The Big Data Quality SDK provides a set of Hive User Defined Functions and User Defined
Aggregation Functions to run the listed Data Quality jobs.

User Defined Functions (UDF)
A User Defined Function processes one record at a time.

The UDF based jobs are:

• Match Key Generator
• Table Lookup
• Advanced Transformer
• Open Name Parser

User Defined Aggregation Functions (UDAF)
A User Defined Aggregation Function first aggregates records into collections based on the join
field, and then processes one collection of records at a time.

The UDAF based jobs are:

• Interflow Match
• Intraflow Match
• Transactional Match
• Best of Breed
• Duplicate Synchronization
• Filter
• Validate Address
• Validate Address Global
• Validate Address Loqate

Components of a Big Data Quality SDK Hive Function

The key components required to run a Big Data Quality SDK Hive UDF are:

The Big Data Quality SDK Hive JAR file of the module to which the desired
Data Quality Hive UDF belongs. This must be registered before using any
UDF.

JAR File

138Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

Each Data Quality job is provided as either a User Defined Function (UDF)
or a User Defined Aggregation Function (UDAF).

Job UDF / UDAF

The alias assigned to a Hive UDF. This is optional.Alias

The rules specified in JSON format, and other configuration details, based
on which the job is to be run.

Configurations

The header fields of the input table, in comma-separated format.Header

The table which provides the input records respectively for the Hive UDF
to be run.

Input Table

The table which provides the candidate records for the Hive UDF to be
run, in case of the Interflow Match UDAF.

Candidate Table

The table which provides the suspect records for the Hive UDF to be run,
in case of Interflow Match UDAF.

Suspect Table

To turn the aggregation of data between Mapper and Reducer on or off,
set this Hive environment variable to false. By default, Hive.Map.Aggr
= true and the data is aggregated.

Set this value to false for all Hive jobs in the SDK.

Hive.Map.Aggr

Note: This configuration is required for all UDAFs.

The memory configurations required to run the job.General
Configurations Note: This configuration is required only for Universal Addressing

Module Hive UDAFs.

The settings for the input data.Input Configurations

Note: This configuration is required only for Universal Addressing
Module Hive UDAFs.

To set various configurations like database settings, COBOL runtime path,
preloading type.

Engine
Configurations

Note: This configuration is required only for Universal Addressing
Module Hive UDAFs.

To set this environment variable to the paths of the various COBOL libraries
required while running the Hive jobs.

LD_LIBRARY_PATH

Note: This configuration is required only for the Validate Address
Hive UDAF.

139Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

To specify the desired validation level to be used in a particular Hive job
of the SDK. Currently, only address validation is supported.

Set this value to VALIDATE.

Process Type

Note: This configuration is required only for the Validate Address
and Validate Address Loqate Hive UDAFs.

The output of the Hive UDF, which may be displayed on the console or
dumped to an output file.

Output

The query to run the required Hive UDF.

For each job, you can achieve any of the below using the applicable query
syntax:

Query

• Display the output of the job on the console.
• Dump the output of the job in a designated output file.

Using a Hive UDF

To run each Hive UDF-based job, you can either run these steps individually on your Hive client
within a single session, or create an HQL file compiling all the required steps sequentially and run
it in one go.

1. In your Hive client, log in to the required Hive database.
2. Register the JAR file of the particular Big Data Quality SDK Module to which the desired Data

Quality Hive UDF belongs.
3. In case of the Validate Address UDAF, to set the path of the COBOL libraries, set the environment

variable LD_LIBRARY_PATH as below:

set mapreduce.admin.user.env =
LD_LIBRARY_PATH=/home/hduser/~/runtime/lib:
/home/hduser/~/runtime/bin:/home/hduser/~/server/modules/universaladdress/lib,
ACU_RUNCBL_JNI_ONLOAD_DISABLE=1, G1RTS=/home/hduser/~/ ;

4. In case of the Validate Address Global UDAF, add the file libAddressDoctor5.so file as well.
5. In case of the Validate Address Loqate UDAF, add these required files to the distributed cache.

• loqate-core.car
• LoqateVerificationLevel.csv
• Loqate.csv
• countryTables.csv
• countryNameTables.csv

6. Create an alias for the Hive UDF of the Data Quality job you wish to run.

140Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

For example:

CREATE TEMPORARY FUNCTION matchkeygenerator as
'com.pb.bdq.amm.process.hive.matchkeygenerator.MatchKeyGeneratorUDF';

7. Specify the configurations like the match rule, sort field, express match column, and other details
for the job and assign to respective variable or configuration properties.

Note: The rule must be in JSON format.

For example:

set rule='{"matchKeys":[{"expressMatchKey":false,
"matchKeyField":"MatchKey1",
"rules":[{"algorithm":"Soundex"," field":"businessname",
"startPosition":1, "length":0,"active":true, "sortInput":null,
"removeNoiseCharacters":false}]},
{"expressMatchKey":false, "matchKeyField":"MatchKey2",
"rules":[{"algorithm":"Koeln", "field":"businessname",
"startPosition":1, "length":0, "active":true, "sortInput":null,
"removeNoiseCharacters":false}]}]}';

Note: Ensure to use the configuration properties in the respective job configurations. For
example, pb.bdq.match.rule, pb.bdq.match.express.column,
pb.bdq.consolidation.sort.field, and so on where indicated in the respective
sample HQL files.

8. Specify the header fields of the input table, in comma-separated format, and assign to a variable
or configuration property.

set pb.bdq.match.header='businessname,recordid';

Note: Ensure to use the configuration property, where indicated. For example,
pb.bdq.match.header, pb.bdq.consolidation.header, and so onwhere indicated
in the respective sample HQL files.

9. Switch off the aggregatiion of data between Reducer and Mapper, by seting the Hive.Map.Aggr
environment variable configuration to false, as indicated in the below example:

set hive.map.aggr = false;

Note: This configuration is required for all UDAFs.

141Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

10. Set the general configurations for running the job as indicated in the below example:

set pb.bdq.uam.universaladdress.general.configuration =
{"dFileType":"SPLIT", "dMemoryModel":"MEDIUM",
"lacsLinkMemoryModel":"MEDIUM", "suiteLinkMemoryModel":"MEDIUM"};

Note: This configuration is required only for Universal Addressing Module Hive UDAFs.

11. Set the input configurations for running the job as indicated in the below example:

set pb.bdq.uam.universaladdress.input.configuration =
{"outputStandardAddress":true, "outputPostalData":false,
"outputParsedInput":false, "outputAddressBlocks":true,
"performUSProcessing":true, "performCanadianProcessing":false,
"performInternationalProcessing":false, "outputFormattedOnFail":false,
"outputCasing":"MIXED", "outputPostalCodeSeparator":true,
"outputMultinationalCharacters":false, "performDPV":false,
"performRDI":false, "performESM":false, "performASM":false,
"performEWS":false, "performLACSLink":false, "performLOT":false,
"failOnCMRAMatch":false, "extractFirm":false, "extractUrb":false,
"outputReport3553":false, "outputReportSERP":false,
"outputReportSummary":true, "outputCASSDetail":false,
"outputFieldLevelReturnCodes":false, "keepMultimatch":false,
"maximumResults":10,
"standardAddressFormat":"STANDARD_ADDRESS_FORMAT_COMBINED_UNIT",
"standardAddressPMBLine":"STANDARD_ADDRESS_PMB_LINE_NONE",
"cityNameFormat":"CITY_FORMAT_STANDARD", "vanityCityFormatLong":true,
"outputCountryFormat":"ENGLISH", "homeCountry":"United States",
"streetMatchingStrictness":"MATCHING_STRICTNESS_MEDIUM",
"firmMatchingStrictness":"MATCHING_STRICTNESS_MEDIUM",
"directionalMatchingStrictness":"MATCHING_STRICTNESS_MEDIUM",
"dualAddressLogic":"DUAL_NORMAL", "dpvSuccessfulStatusCondition":"A",
"reportListFileName":"", "reportlistProcessorName":"",
"reportlistNumber":1, "reportMailerAddress":"", "reportMailerName":"",
"reportMailerCityLine":"", "canReportMailerCPCNumber":"",
"canReportMailerAddress":"", "canReportMailerName":"",
"canReportMailerCityLine":"", "internationalCityStreetSearching":100,
"addressLineSearchOnFail":true, "outputStreetAlias":true,
"outputVeriMoveBlock":false, "dpvDetermineNoStat":false,
"dpvDetermineVacancy":false, "outputAbbreviatedAlias":false,
"outputPreferredAlias":false,
"outputPreferredCity":"CITY_OVERRIDE_NAME_ZIP4",
"performSuiteLink":false, "suppressZplusPhantomCarrierR777":false,
"canStandardAddressFormat":"D", "canEnglishApartmentLabel":"APT",
"canFrenchApartmentLabel":"APP", "canFrenchFormat":"C",
"canOutputCityFormat":"D", "canOutputCityAlias":true,
"canDualAddressLogic":"D", "canPreferHouseNum":false,
"canSSLVRFLG":false, "canRuralRouteFormat":"A", "canNonCivicFormat":"A",
"canDeliveryOfficeFormat":"I", "canEnableSERP":false,
"canSwitchManagedPostalCodeConfidence":false, "stats":null,
"counts":null, "z3seg":null, "serpStats":null, "dpvSeedList":null,
"lacsSeedList":null, "zipInputSet":null, "reportName":null,

142Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

"currentUser":null, "jobName":null, "jobId":null, "jobRequest":false,
"properties":{"DPVDetermineVacancy":"N", "DualAddressLogic":"N",
"ExtractUrb":"N", "CanFrenchFormat":"C", "AddressLineSearchOnFail":"Y",
"OutputFieldLevelReturnCodes":"N", "OutputFormattedOnFail":"N",
"OutputStreetNameAlias":"Y", "OutputReportSERP":"N",
"OutputAddressBlocks":"Y", "ExtractFirm":"N",
"CanEnglishApartmentLabel":"APT", "OutputPreferredCity":"Z",
"FirmMatchingStrictness":"M", "CanFrenchApartmentLabel":"APP",
"KeepMultimatch":"N", "StandardAddressPMBLine":"N",
"PerformSuiteLink":"N", "CanStandardAddressFormat":"D",
"DPVSuccessfulStatusCondition":"A", "PerformLACSLink":"N",
"PerformUSProcessing":"Y", "PerformEWS":"N",
"StandardAddressFormat":"C", "SuppressZplusPhantomCarrierR777":"N",
"HomeCountry":"United States", "ReportMailerAddress":"",
"OutputReport3553":"N", "OutputVeriMoveDataBlock":"N",
"CanDeliveryOfficeFormat":"I", "OutputAbbreviatedAlias":"N",
"PerformCanadianProcessing":"N", "PerformDPV":"N",
"PerformInternationalProcessing":"N", "CanSSLVRFlg":"N",
"StreetMatchingStrictness":"M",
"InternationalCityStreetSearching":"100",
"canSwitchManagedPostalCodeConfidence":"N", "CanDualAddressLogic":"D",
"PerformASM":"N", "OutputCasing":"M", "ReportListFileName":"",
"CanReportMailerAddress":"", "ReportMailerCityLine":"",
"CanReportMailerCPCNumber":"", "ReportListProcessorName":"",
"CanOutputCityAlias":"Y", "DirectionalMatchingStrictness":"M",
"CanRuralRouteFormat":"A", "CanOutputCityFormat":"D",
"ReportListNumber":"1", "CanReportMailerCityLine":"",
"OutputMultinationalCharacters":"N", "EnableSERP":"N",
"CanNonCivicFormat":"A", "OutputShortCityName":"S",
"OutputPostalCodeSeparator":"Y", "FailOnCMRAMatch":"N",
"PerformLOT":"N", "OutputCountryFormat":"E", "CanPreferHouseNum":"N",
"CanReportMailerName":"", "PerformRDI":"N", "ReportMailerName":"",
"PerformESM":"N", "OutputReportSummary":"Y",
"OutputVanityCityFormatLong":"Y", "OutputPreferredAlias":"N",
"DPVDetermineNoStat":"N", "MaximumResults":"10"}}};

Note: This configuration is required only for Universal Addressing Module Hive UDAFs.

12. Set the engine configurations for running the job as indicated in the below example:

set pb.bdq.uam.universaladdress.engine.configurations = {
"referenceData":{
"dataDir":"/home/hduser/resources/uam/universaladdress/UAM_universaladdress4.0_Feb15/",
"referenceDataPathLocation":"LocaltoDataNodes"},
"cobolRuntimePath":"/home/hduser/tapan/addressquality/",
"modulesDir":"/home/hduser/tapan/addressquality/modules",
"dpvDbPath":null, "suiteLinkDBPath":null, "ewsDBPath":null,
"rdiDBPath":null, "lacsDBPath":null};

Note: This configuration is required only for Universal Addressing Module Hive UDAFs.

143Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

13. Set the process type to indicate the desired validation level. We currently support address
validation only.
For example, in the Validate Address job, set the process type as below:

set pb.bdq.uam.universaladdress.process.type=VALIDATE;

Note: This configuration is required only for the Validate Address and Validate Address
Loqate Hive UDAFs.

14. To run the job and display the job output on the console, write the query as indicated in the below
example:

SELECT businessname, recordid, bar.ret["MatchKey1"] AS MatchKey1,
bar.ret["MatchKey2"] AS MatchKey2 FROM (
SELECT *, matchkeygenerator (${hiveconf:rule}, ${hiveconf:header},
businessname, recordid) AS ret FROM cust) bar;

To run the job and dump the job output in a designated file, write the query as indicated in the
below example:

INSERT OVERWRITE LOCAL DIRECTORY '/home/hadoop/MatchKey/' row format
delimited FIELDS TERMINATED BY ',' MAP FIELDS TERMINATED BY ':'
COLLECTION ITEMS TERMINATED BY '|' LINES TERMINATED BY '\n' STORED AS
TEXTFILE
SELECT businessname, recordid, bar.ret["MatchKey1"] AS MatchKey1,
bar.ret["MatchKey2"] AS MatchKey2 FROM (
SELECT *, matchkeygenerator (${hiveconf:rule}, ${hiveconf:header},
businessname, recordid) AS ret FROM cust) bar;

Note: Ensure to use the alias defined earlier for the UDF.

Important: For all UDAF jobs, use the respective configuration properties as variables while defining
the input parameters, where indicated in the respective sample HQL files.

For example, pb.bdq.match.rule, pb.bdq.match.express.column,
pb.bdq.consolidation.sort.field, and so on.

144Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

Advanced Matching Module Functions

Match Key Generator

Sample Hive Script

-- Register Advance Matching Module[AMM] Hive UDF jar
ADD JAR <Directory path>/amm.hive.${project.version}.jar;

-- Provide alias to UDF class (optional). String in quotes represent
class names needed for this job to run.
CREATE TEMPORARY FUNCTION matchkeygenerator as
'com.pb.bdq.amm.process.hive.matchkeygenerator.MatchKeyGeneratorUDF';

-- Match Key Generator is implemented as a UDF (User Defined function).
It processes one row at a time and generates a map of match keys for
each row.

-- Set rule and header
set rule='{"matchKeys":[{"expressMatchKey":false,
"matchKeyField":"MatchKey1",
"rules":[{"algorithm":"Soundex"," field":"businessname",
"startPosition":1, "length":0,"active":true, "sortInput":null,
"removeNoiseCharacters":false}]},
{"expressMatchKey":false, "matchKeyField":"MatchKey2",
"rules":[{"algorithm":"Koeln", "field":"businessname", "startPosition":1,
"length":0, "active":true, "sortInput":null,
"removeNoiseCharacters":false}]}]}';

set header='businessname,recordid';

-- Execute query on the desired table to display the job output on
console. This query returns a map of key value for each row containing
matchkeys as per rule passed.
SELECT businessname, recordid, bar.ret["MatchKey1"] AS MatchKey1,
bar.ret["MatchKey2"] AS MatchKey2 FROM (
SELECT *, matchkeygenerator (${hiveconf:rule}, ${hiveconf:header},
businessname, recordid) AS ret FROM cust) bar;

-- Query to dump output to a directory in file system
INSERT OVERWRITE LOCAL DIRECTORY '/home/hadoop/MatchKey/' row format
delimited FIELDS TERMINATED BY ',' MAP FIELDS TERMINATED BY ':'
COLLECTION ITEMS TERMINATED BY '|' LINES TERMINATED BY '\n' STORED AS

145Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

TEXTFILE
SELECT businessname, recordid, bar.ret["MatchKey1"] AS MatchKey1,
bar.ret["MatchKey2"] AS MatchKey2 FROM (
SELECT *, matchkeygenerator (${hiveconf:rule}, ${hiveconf:header},
businessname, recordid) AS ret FROM cust) bar;

--Sample data in input table customer
--+--+----------------+--+
--| cust.businessname | cust.recordid |
--+--+----------------+--+
--| Internal Revenue Service | 0 |
--| Juan F Vera-Monroig | 1 |
--| Leonardo Pagan-Reyes | 2 |
--| Academia San Joaquin Colegios/Academias | 3 |
--| Nereida Portalatin-Padua | 4 |
--+--+----------------+--+

--Sample output for input query
+--+-----------+------------+-------------------+--+
| businessname | recordid | matchkey1 |

matchkey2 |
+--+-----------+------------+-------------------+--+
| Internal Revenue Service | 0 | I536 |
0627657368738 |
| Juan F Vera-Monroig | 1 | J511 |
063376674 |
| Leonardo Pagan-Reyes | 2 | L563 |
567214678 |
| Academia San Joaquin Colegios/Academias | 3 | A235 |
0426864645484268 |
| Nereida Portalatin-Padua | 4 | N631 |
67217252612 |
+--+-----------+------------+-------------------+--+

Interflow Match

Sample Hive Script

-- Register Advance Matching Module[AMM] Hive UDF jar
ADD JAR <Directory path>/amm.hive.${project.version}.jar;

-- Provide alias to UDF class (optional). String in quotes represent
class names needed for this job to run.
CREATE TEMPORARY FUNCTION rowid as
'com.pb.bdq.hive.common.RowIDGeneratorUDF';

146Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

-- This rowid is needed by Interflow Match to maintain the order of rows
while creating groups. This is a UDF (User Defined Function) and
associates an incremental unique integer number to each row of the data.

CREATE TEMPORARY FUNCTION InterMatch as
'com.pb.bdq.amm.process.hive.interflow.InterMatchUDAF';

-- Inter Flow is implemented as a UDAF (User Defined Aggregation
function). It processes one group of rows at a time based on join field
and generates the result for that group of rows.

-- Disable map side aggregation
set hive.map.aggr = false;

-- Set the rule using configuration property 'pb.bdq.match.rule'

set pb.bdq.match.rule={"type":"Parent",
"missingDataMethod":"IgnoreBlanks", "threshold":100.0, "weight":0,
"children":[{"type":"Child", "missingDataMethod":"IgnoreBlanks",
"threshold":80.0, "weight":0, "matchWhenNotTrue":false,
"scoringMethod":"Maximum",
"algorithms":[{"name":"EditDistance", "weight":0, "options":null},
{"name":"Metaphone", "weight":0, "options":null}],
"crossMatchField":[], "suspectField":"firstname", "candidateField":null},
{"type":"Child", "missingDataMethod":"IgnoreBlanks", "threshold":80.0,
"weight":0,
"matchWhenNotTrue":false, "scoringMethod":"Maximum",
"algorithms":[{"name":"KeyboardDistance", "weight":0, "options":null},
{"name":"Metaphone3", "weight":0, "options":null}], "crossMatchField":[],
"suspectField":"lastname", "candidateField":null}],
"scoringMethod":"Average", "matchingMethod":"AllTrue", "name":"NameData",
"matchWhenNotTrue":false};

-- Set the header for suspect table using configuration property
'pb.bdq.suspect.header'
set
pb.bdq.match.suspect.header=name,firstname,lastname,matchkey,middlename,recordid;

-- Set the header for candidate table using configuration property
'pb.bdq.candidate.header'
set
pb.bdq.match.candidate.header=name,firstname,lastname,matchkey,middlename,recordid;

-- Set the sorting field to the candidates unique id's alias used in
the query. This is not from the input data.
set pb.bdq.match.sort.field=c_id;

-- Set the express match column(optional)
set pb.bdq.match.express.column=matchkey;

-- Set sort field name to the alias used in the query, using
configuration property 'pb.bdq.match.inter.comparison'

147Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

set pb.bdq.match.inter.comparison=maxNumOfDuplicates,2;

-- Optionally, one can also set
'pb.bdq.match.inter.comparison=returnUniqueCandidates,true';

-- Set sort collection number option for unique records using
configuration property 'pb.bdq.match.unique.collectnumber.zero'
set pb.bdq.match.unique.collectnumber.zero=false;

-- Execute Query on the desired table. The query uses a UDF rowid, which
must be present in the query to maintain the ordering of the data while
reading.

SELECT lateralview.record ["MatchRecordType"],
lateralview.record ["MatchScore"],
lateralview.record ["HasDuplicate"],
lateralview.record ["CollectionNumber"],
coalesce(lateralview.record ["ExpressMatched"], ''),
lateralview.record ["SourceType"],
lateralview.record ["name"],
lateralview.record ["firstname"],
lateralview.record ["lastname"],
lateralview.record ["matchkey"],
lateralview.record ["middlename"],
lateralview.record ["recordid"]
FROM (
SELECT interMatch(s_id, s_name, s_firstname, s_lastname, s_matchkey,
s_middlename, s_recordid, c_id,c_name, c_firstname, c_lastname,
c_matchkey, c_middlename, c_recordid) AS
OUTPUT
FROM (
SELECT suspects.suspect_id AS s_id,
suspects.NAME AS s_name,
suspects.firstname AS s_firstname,
suspects.lastname AS s_lastname,
suspects.matchkey AS s_matchkey,
suspects.middlename AS s_middlename,
suspects.recordid AS s_recordid,
candidates.candidate_id AS c_id,
candidates.NAME AS c_name,
candidates.firstname AS c_firstname,
candidates.lastname AS c_lastname,
candidates.matchkey AS c_matchkey,
candidates.middlename AS c_middlename,
candidates.recordid AS c_recordid
FROM

(
SELECT rowid(*) AS suspect_id
,*
FROM namedataintersuspect
) AS suspects LEFT JOIN
(

148Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

SELECT rowid(*) AS candidate_id
,*
FROM namedataintercandidate
) AS candidates
on suspects.matchkey = candidates.matchkey

) AS joinrecords
GROUP BY joinrecords.s_matchkey
) AS innerResult LATERAL VIEW explode(innerResult.OUTPUT) lateralview
AS record;

-- Query to dump data to a file

INSERT OVERWRITE LOCAL DIRECTORY '/home/hadoop/intermatch/output'
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
collection items terminated by '||' map keys terminated by ':'
SELECT lateralview.record ["MatchRecordType"],
lateralview.record ["MatchScore"],
lateralview.record ["HasDuplicate"],
lateralview.record ["CollectionNumber"],
coalesce(lateralview.record ["ExpressMatched"], ''),
lateralview.record ["SourceType"],
lateralview.record ["name"],
lateralview.record ["firstname"],
lateralview.record ["lastname"],
lateralview.record ["matchkey"],
lateralview.record ["middlename"],
lateralview.record ["recordid"]
FROM (
SELECT interMatch(s_id, s_name, s_firstname, s_lastname, s_matchkey,
s_middlename, s_recordid, c_id,c_name, c_firstname, c_lastname,
c_matchkey, c_middlename, c_recordid) AS
OUTPUT
FROM (
SELECT suspects.suspect_id AS s_id,
suspects.NAME AS s_name,
suspects.firstname AS s_firstname,
suspects.lastname AS s_lastname,
suspects.matchkey AS s_matchkey,
suspects.middlename AS s_middlename,
suspects.recordid AS s_recordid,
candidates.candidate_id AS c_id,
candidates.NAME AS c_name,
candidates.firstname AS c_firstname,
candidates.lastname AS c_lastname,
candidates.matchkey AS c_matchkey,
candidates.middlename AS c_middlename,
candidates.recordid AS c_recordid
FROM

149Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

(
SELECT rowid(*) AS suspect_id
,*
FROM namedataintersuspect
) AS suspects LEFT JOIN
(
SELECT rowid(*) AS candidate_id
,*
FROM namedataintercandidate
) AS candidates
on suspects.matchkey = candidates.matchkey

) AS joinrecords
GROUP BY joinrecords.s_matchkey
) AS innerResult LATERAL VIEW explode(innerResult.OUTPUT) lateralview
AS record;

-- Sample input Suspect data

--+------------------+----------+-----------------+-------------+------------+-----------+
--| name | firstname| lastname | matchkey |
middlename | recordid |
--+------------------+----------+-----------------+-------------+------------+-----------+
--| LAURA ABADSANTOS| LAURA | ABADSANTOS | L |

| 1 |
--+------------------+----------+-----------------+-------------+------------+-----------+

-- Sample input candidate data

--+------------------+----------+-----------------+-------------+------------+-----------+
--| name | firstname| lastname | matchkey |
middlename | recordid |
--+------------------+----------+-----------------+-------------+------------+-----------+
--| KATHRYN E ABATE | KATHRYN | ABATE | L | E

| 3 |
--| ANNA ABAYEV | ANNA | ABAYEV | L |

| 5 |
--+------------------+----------+-----------------+-------------+------------+-----------+

-- Sample output data

--+---------------+----------+------------+----------------+--------------+----------+------------+----------+---------+--------+----------+-----------+
--|MatchRecordType|MatchScore|HasDuplicate|CollectionNumber|ExpressMatched|SourceType|
name | firstname| lastname|matchkey|middlename| recordid |
--+---------------+----------+------------+----------------+--------------+----------+------------+----------+---------+--------+----------+-----------+
--|S |0 |Y |0-0-1 |

|S |LAURA ABADSA| LAURA |ABADSANTO| L | |
1 |
--|D |80 |D |0-0-1 |N

|C |KATHRYN E AB| KATHRYN |AB | L | E |
3 |
--|D |90 |D |0-0-1 |N

150Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

|C |ANNA ABAYEV | ANNA |ABAYEV | L | |
5 |
--+---------------+----------+------------+----------------+--------------+----------+------------+----------+---------+--------+----------+-----------+

Intraflow Match

Sample Hive Script

-- Register Advance Matching Module[AMM] Hive UDF jar
ADD JAR <Directory path>/amm.hive.${project.version}.jar;

-- Provide alias to UDF class (optional). String in quotes represent
class names needed for this job to run.
CREATE TEMPORARY FUNCTION rowid as
'com.pb.bdq.hive.common.RowIDGeneratorUDF';

-- This rowid is needed by Intraflow Match to maintain the order of rows
while creating groups. This is a UDF (User Defined Function) and
associates an incremental unique integer number to each row of the data.

CREATE TEMPORARY FUNCTION intraMatch as
'com.pb.bdq.amm.process.hive.intraflow.IntraMatchUDAF';
-- Intra Flow is implemented as a UDAF (User Defined Aggregation
function). It processes one group of rows at a time and generates the
result for that group of rows

-- Disable map side aggregation
set hive.map.aggr = false;

-- Set the rule using configuration property 'pb.bdq.match.rule'
set pb.bdq.match.rule={"type":"Parent",
"children":[{"type":"Child", "matchWhenNotTrue":false, "threshold":80.0,
"weight":0,
"algorithms":[{"name":"EditDistance", "weight":0, "options":null},
{"name":"Metaphone", "weight":0, "options":null}],
"scoringMethod":"Maximum", "missingDataMethod":"IgnoreBlanks",
"crossMatchField":[], "suspectField":"firstname", "candidateField":null},
{"type":"Child", "matchWhenNotTrue":false, "threshold":80.0, "weight":0,
"algorithms":[{"name":"KeyboardDistance", "weight":0, "options":null},
{"name":"Metaphone3", "weight":0, "options":null}],
"scoringMethod":"Maximum", "missingDataMethod":"IgnoreBlanks",
"crossMatchField":[], "suspectField":"lastname", "candidateField":null}],
"matchingMethod":"AllTrue", "scoringMethod":"Average",
"missingDataMethod":"IgnoreBlanks", "name":"NameData",
"matchWhenNotTrue":false, "threshold":100,"weight":0};

151Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

-- Set header(along with id field alias used in query) using
configuration property 'pb.bdq.match.header'
set pb.bdq.match.header=firstname,lastname,matchkey,middlename,id;

-- Set the express match column (optional)
set pb.bdq.match.express.column=matchkey;

-- Set sort field name to the alias used in the query, using the
configuration property 'pb.bdq.match.sort.field'
set pb.bdq.match.sort.field=id;

-- Set sort collection number option for unique records using
configuration property 'pb.bdq.match.unique.collectnumber.zero'
set pb.bdq.match.unique.collectnumber.zero=false;

-- Execute Query on the desired table. The query uses a UDF rowid, which
must be present in the query to maintain the ordering of the data while
reading.
-- Intra Match returns a list of map containing <key=value> pairs. Each
map in the list corresponds to a row in the group. The below query
explodes that list of map and fetches fields from map by keys.

SELECT innerresult.record["MatchRecordType"],
innerresult.record["MatchScore"],
innerresult.record["CollectionNumber"],
innerresult.record["ExpressMatched"],
innerresult.record["firstname"],
innerresult.record["lastname"],
innerresult.record["matchkey"],
innerresult.record["middlename"]
FROM (
SELECT intraMatch(
innerRowID.firstname,
innerRowID.lastname,
innerRowID.matchkey,
innerRowID.middlename,
innerRowID.id

) AS matchgroup
FROM (
SELECT firstname, lastname, matchkey, middlename, rowid(*)
AS id
FROM customer_data
) innerRowID
GROUP BY matchkey
) AS innerResult
LATERAL VIEW explode(innerResult.matchgroup) innerresult AS record ;

-- Query to dump output to a file

INSERT OVERWRITE LOCAL DIRECTORY '/home/hadoop/IntraFlow/' ROW FORMAT
DELIMITED FIELDS TERMINATED BY ',' collection items terminated by '||'
map keys terminated by ':'
SELECT innerresult.record["MatchRecordType"],

152Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

innerresult.record["MatchScore"],
innerresult.record["CollectionNumber"],
innerresult.record["ExpressMatched"],
innerresult.record["firstname"],
innerresult.record["lastname"],
innerresult.record["matchkey"],
innerresult.record["middlename"]
FROM (
SELECT intraMatch(innerRowID.firstname,
innerRowID.lastname,
innerRowID.matchkey,
innerRowID.middlename,
innerRowID.id

) AS matchgroup
FROM (
SELECT firstname, lastname, matchkey, middlename, rowid(*)
AS id
FROM customer_data
) innerRowID
GROUP BY matchkey
) AS innerResult
LATERAL VIEW explode(innerResult.matchgroup) innerresult AS record ;

--sample input data
--+-------------+-------------+---------------+--------------+
--| firstname | lastname | middlename | matchkey |
--+-------------+-------------+---------------+--------------+
--| Steven | Aaen | LYRIC | AAE |
--| DEBRA | AALMO | BOATMAN | AAE |

--| MARY | AARON | ROLLING MEADOW| AAE |
--+-------------+-------------+---------------+--------------+

--sample output data
--+-----------+---------+------------+---------+---------------+----------------+--------------+----------+
--| firstname | lastname|middlename |
matchkey|MatchRecordType|CollectionNumber|ExpressMatched|MatchScore|
--+-----------+---------+------------+---------+---------------+----------------+--------------+----------+
--| Steven | Aaen | LYRIC | AAE | S |
0-0-1 | Y | 0 |
--| DEBRA | AALMO | BOATMAN | AAE | D |
0-0-1 | Y | 100 |

--| MARY | AARON | ROLLING MEA| AAE | D |
0-0-1 | Y | 100 |

153Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

--+-----------+---------+------------+---------+---------------+----------------+--------------+----------+

Transactional Match

Sample Hive Script

-- Register Advance Matching Module[AMM] Hive UDF jar
ADD JAR <Directory path>/amm.hive.${project.version}.jar;

-- Provide alias to UDF class (optional). String in quotes represent
class names needed for this job to run.

CREATE TEMPORARY FUNCTION rowid as
'com.pb.bdq.hive.common.RowIDGeneratorUDF';

-- This rowid is needed by Transactional Match to maintain the order of
rows while creating groups. This is a UDF (User Defined Function) and
associates an incremental unique integer number to each row of the
data.

CREATE TEMPORARY FUNCTION transactionalMatch as
'com.pb.bdq.amm.process.hive.transactional.TransactionalMatchUDAF';

-- Transactional Match is implemented as a UDAF (User Defined Aggregation
function). It processes one group of rows at a time and generates the
result for that group of rows.

-- Disable map side aggregation
set hive.map.aggr = false;

-- Set the rule using configuration property 'pb.bdq.match.rule'
set pb.bdq.match.rule={"type":"Parent", "children":[{"type":"Child",
"matchWhenNotTrue":false, "threshold":80.0, "weight":0,
"algorithms":[{"name":"EditDistance", "weight":0, "options":null},
{"name":"Metaphone","weight":0,"options":null}],
"scoringMethod":"Maximum", "missingDataMethod":"IgnoreBlanks",
"crossMatchField":[], "suspectField":"firstname", "candidateField":null},
{"type":"Child", "matchWhenNotTrue":false, "threshold":80.0, "weight":0,
"algorithms":[{"name":"KeyboardDistance","weight":0,"options":null},
{"name":"Metaphone3","weight":0,"options":null}],
"scoringMethod":"Maximum", "missingDataMethod":"IgnoreBlanks",
"crossMatchField":[], "suspectField":"lastname", "candidateField":null}],
"matchingMethod":"AllTrue", "scoringMethod":"Average",
"missingDataMethod":"IgnoreBlanks", "name":"NameData",
"matchWhenNotTrue":false, "threshold":100, "weight":0};

-- Set header(along with id field alias used in query) using

154Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

configuration property 'pb.bdq.match.header'
set
pb.bdq.match.header=name,firstname,lastname,matchkey,middlename,recordid,id;

-- Set sort field name to the alias used in the query, using the
configuration property 'pb.bdq.match.sort.field'
set pb.bdq.match.sort.field=id;

-- Set sort collection number option for unique records using
configuration property 'pb.bdq.match.unique.candidate.return'. The
default value is false.
set pb.bdq.match.unique.candidate.return=true;

-- Execute Query on the desired table. The query uses a UDF rowid, which
must be present in the query to maintain the ordering of the data while
reading.
-- Transactional Match returns a list of map containing <key=value>
pairs. Each map in the list corresponds to a row in the group. The below
query explodes that list of map and fetches fields from map by keys.

SELECT tmp2.record["MatchRecordType"],
tmp2.record["MatchScore"],
tmp2.record["HasDuplicate"],
tmp2.record["name"],
tmp2.record["firstname"],
tmp2.record["lastname"],
tmp2.record["matchkey"],
tmp2.record["middlename"],
tmp2.record["recordid"]
FROM (
SELECT transactionalMatch(innerRowID.name, innerRowID.firstname,
innerRowID.lastname, innerRowID.matchkey, innerRowID.middlename,
innerRowID.recordid, innerRowID.id
) AS matchgroup
FROM (
SELECT name, firstname, lastname, matchkey, middlename, recordid,

rowid(name, firstname, lastname, matchkey, middlename, recordid) AS id
FROM customer_data
) innerRowID
GROUP BY matchkey
) As innerResult
LATERAL VIEW explode(innerResult.matchgroup) tmp2 as record ;

-- Query to dump output to a file

INSERT OVERWRITE LOCAL DIRECTORY '/home/hadoop/transmatch/' ROW FORMAT
DELIMITED FIELDS TERMINATED BY ',' collection items terminated by '||'
map keys terminated by ':'
SELECT tmp2.record["MatchRecordType"],
tmp2.record["MatchScore"],
tmp2.record["HasDuplicate"],
tmp2.record["name"],

155Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

tmp2.record["firstname"],
tmp2.record["lastname"],
tmp2.record["matchkey"],
tmp2.record["middlename"],
tmp2.record["recordid"]
FROM (
SELECT transactionalMatch(innerRowID.name,
innerRowID.firstname,
innerRowID.lastname,
innerRowID.matchkey,
innerRowID.middlename,
innerRowID.recordid,
innerRowID.id) as matchgroup

FROM (
SELECT name, firstname, lastname, matchkey, middlename, recordid,

rowid(name, firstname, lastname, matchkey, middlename, recordid) AS id

FROM customer_data
) innerRowID
GROUP BY matchkey) As innerResult
LATERAL VIEW explode(innerResult.matchgroup) tmp2 as record ;

--sample input data
--+-------------------+------------------------+-----------------------+-----------------------+-------------------------+-----------------------+--+
--| name | firstname | lastname
| matchkey | middlename | recordid

|
--+-------------------+------------------------+-----------------------+-----------------------+-------------------------+-----------------------+--+
--| ZORINA ABDOOL | ZORINA | ABDOOL
| Z | | 12

|
--| ZULFIQAR ALI | ZULFIQAR | ALI
| Z | | 116

|
--| ZACHARY BENNETT | ZACHARY | BENNETT
| Z | | 515

|
--| ZOHAR BUERGER | ZOHAR | BUERGER
| Z | | 889

|
--+-------------------+------------------------+-----------------------+-----------------------+-------------------------+-----------------------+--+

--sample output data
--+----------------+---------------------+----------+------------+-----------+-----------------+------------+--------------+
--|name |firstname | lastname | matchkey | middlename |
recordid | MatchRecordType | MatchScore | HasDuplicate |
--+----------------+----------+----------+----------+------------+-----------+-----------------+------------+--------------+
--|ZORINA ABDOOL |ZORINA | ABDOOL | Z | | 12

| S | 0 | Y |
--|ZULFIQAR ALI |ZULFIQAR | ALI | Z | | 116

| D | 90 | D |

156Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

--|ZACHARY BENNETT|ZACHARY | BENNETT | Z | | 515
| D | 91 | D |

--|ZOHAR BUERGER |ZOHAR | BUERGER | Z | | 889
| D | 91 | D |

--+----------------+----------+---------------------+------------------------+-----------------+------------+--------------+

Best of Breed

Sample Hive Script

-- Register Advance Matching Module[AMM] Hive UDF jar
ADD JAR <Directory path>/amm.hive.${project.version}.jar;

-- Provide alias to UDF class (optional). String in quotes represent
class names needed for this job to run.

CREATE TEMPORARY FUNCTION rowid as
'com.pb.bdq.hive.common.RowIDGeneratorUDF';

-- This rowid is needed by Best of Breed to maintain the order of rows
while creating groups. This is a UDF (User Defined Function) and
associates an incremental unique integer number to each row of the data.

CREATE TEMPORARY FUNCTION bestofbreed as
'com.pb.bdq.amm.process.hive.consolidation.bestofbreed.BestOfBreedUDAF';
-- Best of Breed is implemented as a UDAF (User Defined Aggregation
function). It processes one group of rows at a time and generates the
result for that group of rows.

-- Disable map side aggregation
set hive.map.aggr = false;

-- Set the rule using configuration property 'pb.bdq.consolidation.rule'

set pb.bdq.consolidation.rule={"consolidationConditions":[
{"consolidationRule":{"conditionClass":"conjoinedRule", "joinType":"AND",
"consolidationRules":[{"conditionClass":"simpleRule",
"operation":"LONGEST", "fieldName":"c5", "value":null,
"valueNumeric":true, "valueFromField":false},
{"conditionClass":"simpleRule", "operation":"IS_NOT_EMPTY",
"fieldName":"c9", "value":null, "valueNumeric":false,
"valueFromField":false}]},
"actions":[{"accumulate":false, "copyFromField":true, "sourceData":"c2",
"destinationFieldName":"c2"},
{"accumulate":false, "copyFromField":false, "sourceData":"Admin",
"destinationFieldName":"c4"}]},
{"consolidationRule":{"conditionClass":"conjoinedRule", "joinType":"AND",

157Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

"consolidationRules":[{"conditionClass":"simpleRule",
"operation":"LONGEST", "fieldName":"c5", "value":null,
"valueNumeric":true, "valueFromField":false},
{"conditionClass":"simpleRule", "operation":"IS_NOT_EMPTY",
"fieldName":"c9", "value":null, "valueNumeric":false,
"valueFromField":false}]},
"actions":[{"accumulate":false, "copyFromField":false,
"sourceData":"Changed", "destinationFieldName":"c10"},
{"accumulate":false, "copyFromField":true, "sourceData":"c5",
"destinationFieldName":"c6"},
{"accumulate":true, "copyFromField":true, "sourceData":"c10",
"destinationFieldName":"c10"}]}],
"keepOriginalRecords":true, "buildTemplateRecord":true,
"templateRules":[{"consolidationRule":{"conditionClass":"conjoinedRule",
"joinType":"OR",
"consolidationRules":[{"conditionClass":"simpleRule",
"operation":"CONTAINS", "fieldName":"c1", "value":"li",
"valueNumeric":false, "valueFromField":false},
{"conditionClass":"simpleRule", "operation":"LONGEST", "fieldName":"c5",
"value":null, "valueNumeric":false, "valueFromField":false}]},
"actions":[]}]};

-- Set header (along with the id field alias used in the query) using
configuration property 'pb.bdq.consolidation.header'
set pb.bdq.consolidation.header=c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,id;

-- Set sort field name to the alias used in the query, using the
configuration property 'pb.bdq.consolidation.sort.field'
set pb.bdq.consolidation.sort.field=id;

-- Execute Query on the desired table. The query uses a UDF rowid, which
must be present in the query to maintain the ordering of the data while
reading.
-- Best of Breed returns a list of map containing <key=value> pairs.
Each map in the list corresponds to a row in the group. The below query
explodes that list of map and fetches fields from map by keys.

SELECT tmp2.record["c1"],
tmp2.record["c2"],
tmp2.record["c3"],
tmp2.record["c4"],
tmp2.record["c5"],
tmp2.record["c6"],
tmp2.record["c7"],
tmp2.record["c8"],
tmp2.record["c9"],
tmp2.record["c10"],
tmp2.record["CollectionRecordType"]
FROM (
SELECT bestofbreed(innerRowID.c1,
innerRowID.c2,
innerRowID.c3,
innerRowID.c4,

158Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

innerRowID.c5,
innerRowID.c6,
innerRowID.c7,
innerRowID.c8,
innerRowID.c9,
innerRowID.c10,
innerRowID.id) AS matchgroup
FROM(
SELECT c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, rowid(*) AS id FROM

databob
) innerRowID
GROUP BY c3
) AS innerResult
LATERAL VIEW explode(innerResult.matchgroup) tmp2 AS record ;

-- Query to dump the output to a file

INSERT OVERWRITE LOCAL DIRECTORY '/home/hadoop/bestofbreed/' ROW FORMAT
DELIMITED FIELDS TERMINATED BY ',' collection items terminated by '||'
map keys terminated by ':'
SELECT tmp2.record["c1"],
tmp2.record["c2"],
tmp2.record["c3"],
tmp2.record["c4"],
tmp2.record["c5"],
tmp2.record["c6"],
tmp2.record["c7"],
tmp2.record["c8"],
tmp2.record["c9"],
tmp2.record["c10"],
tmp2.record["CollectionRecordType"]
FROM (
SELECT bestofbreed(innerRowID.c1,
innerRowID.c2,
innerRowID.c3,
innerRowID.c4,
innerRowID.c5,
innerRowID.c6,
innerRowID.c7,
innerRowID.c8,
innerRowID.c9,
innerRowID.c10,
innerRowID.id) as matchgroup
FROM(
SELECT c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, rowid(*) AS id FROM

databob
) innerRowID
GROUP BY c3
) AS innerResult
LATERAL VIEW explode(innerResult.matchgroup) tmp2 AS record ;

--sample input data

159Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

--+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+
--| c1 | c2 | c3 | c4 | c5 | c6 |

c7 | c8 | c9 | c10 |
--+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+
--| Duplicate| 87 | 1 | |ANNA ABNEY| ANNA |

| ABNEY | A | 18 |
--| Duplicate| 77 | 1 | |ANNA A ANN| ANDREA |

| ANNAKAY | A | 196 |
--+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+

--sample output data
--+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+--------------------+
--| c1 | c2 | c3 | c4 | c5 | c6 |
c7 | c8 | c9 | c10 |CollectionRecordType|
--+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+--------------------+
--| Duplicate| 87 | 1 | |ANNA ABNEY| ANNA |

| ABNEY | A | 18 | Primary |
--| Duplicate| 77 | 1 | |ANNA A ANN| ANDREA |
ARANOW | ANNAKAY | A | 196 | Secondary |
--| Duplicate| 87 | 1 | |ANNA ABNEY| ANNA |
ARANOW | ABNEY | A | 18 | BestOfBreed |
--+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+--------------------+

Duplicate Synchronization

Sample Hive Script

-- Register Advance Matching Module[AMM] Hive UDF jar
ADD JAR <Directory path>/amm.hive.${project.version}.jar;

-- Provide alias to UDF class (optional). String in quotes represent
class names needed for this job to run.

CREATE TEMPORARY FUNCTION rowid as
'com.pb.bdq.hive.common.RowIDGeneratorUDF';

-- This rowid is needed by Duplicate Synchronization to maintain the
order of rows while creating groups. This is a UDF (User Defined
Function) and associates an incremental unique integer number to each
row of the data.

CREATE TEMPORARY FUNCTION dupsync as
'com.pb.bdq.amm.process.hive.consolidation.duplicatesync.DuplicateSyncUDAF';

-- Duplicate Sync is implemented as a UDAF (User Defined Aggregation
function). It processes one group of rows at a time and generates the
result for that group of rows.

160Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

-- Disable map side aggregation
set hive.map.aggr = false;

-- Set the rule using configuration property 'pb.bdq.consolidation.rule'

set pb.bdq.consolidation.rule={"consolidationConditions":
[{"consolidationRule":
{"conditionClass":"conjoinedRule", "joinType":"AND",
"consolidationRules":[{"conditionClass":"simpleRule",
"operation":"HIGHEST", "fieldName":"column2", "value":null,
"valueFromField":false, "valueNumeric":true}]},
"actions":[{"accumulate":false, "copyFromField":true,
"sourceData":"column5", "destinationFieldName":"column5"}]}]};

-- Set header (along with the id field alias used in the query) using
configuration property 'pb.bdq.consolidation.header'
set
pb.bdq.consolidation.header=column1,column2,column3,column4,column5,id;

-- Set sort field name to alias used in query using configuration
property 'pb.bdq.consolidation.sort.field'
set pb.bdq.consolidation.sort.field=id;

-- Execute Query on the desired table. The query uses a UDF rowid, which
must be present in the query to maintain the ordering of the data while
reading.
-- Duplicate Sync returns a list of map containing <key=value> pairs.
Each map in the list corresponds to a row in the group. The below query
explodes that list of map and fetches fields from map by keys.

SELECT tmp2.record["column1"],
tmp2.record["column2"],
tmp2.record["column3"],
tmp2.record["column4"],
tmp2.record["column5"]
FROM (
SELECT dupsync (innerRowID.column1,
innerRowID.column2,
innerRowID.column3,
innerRowID.column4,
innerRowID.column5,
innerRowID.id
) AS matchgroup
FROM (
SELECT column1, column2, column3, column4, column5, rowid(*)
AS id
FROM databob
) innerRowID
GROUP BY column3
) AS innerResult
LATERAL VIEW explode(innerResult.matchgroup) tmp2 AS record ;

161Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

-- Query to dump the output to a file

INSERT OVERWRITE LOCAL DIRECTORY '/home/hadoop/dupsync/' ROW FORMAT
DELIMITED FIELDS TERMINATED BY ',' collection items terminated by '||'
map keys terminated by ':'
SELECT tmp2.record["column1"],
tmp2.record["column2"],
tmp2.record["column3"],
tmp2.record["column4"],
tmp2.record["column5"]
FROM (
SELECT dupsync(innerRowID.column1,
innerRowID.column2,
innerRowID.column3,
innerRowID.column4,
innerRowID.column5,
innerRowID.id
) AS matchgroup
FROM (
SELECT column1, column2, column3, column4, column5, rowid(*)
AS id
FROM databob
) innerRowID
GROUP BY column3) AS innerResult
LATERAL VIEW explode(innerResult.matchgroup) tmp2 AS record ;

--sample input data
--+----------+----------+----------+----------+----------+
--| column1 | column2 | column3 | column4 | column5 |
--+----------+----------+----------+----------+----------+
--| Duplicate| 87 | 1 | |ANNA ABNEY|
--| Duplicate| 77 | 1 | |ANNA A ANN|
--| Suspect | | 1 | |ANNA A ABN|
--+----------+----------+----------+----------+----------+

--sample output data
--+----------+----------+----------+----------+----------+
--| column1 | column2 | column3 | column4 | column5 |
--+----------+----------+----------+----------+----------+
--| Duplicate| 87 | 1 | |ANNA ABNEY|
--| Duplicate| 77 | 1 | |ANNA A ANN|

162Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

--| Suspect | | 1 | |ANNA ABNEY|
--+----------+----------+----------+----------+----------+

Filter

Sample Hive Script

-- Register Advance Matching Module[AMM] Hive UDF jar
ADD JAR <Directory path>/amm.hive.${project.version}.jar;

-- Provide alias to UDF class (optional). String in quotes represent
class names needed for this job to run.

CREATE TEMPORARY FUNCTION rowid as
'com.pb.bdq.hive.common.RowIDGeneratorUDF';

-- This rowid is needed by Filter to maintain the order of rows while
creating groups. This is a UDF (User Defined Function) and associates
an incremental unique integer number to each row of the data.

CREATE TEMPORARY FUNCTION filter as
'com.pb.bdq.amm.process.hive.consolidation.filter.FilterUDAF';

-- Filter is implemented as a UDAF (User Defined Aggregation function).
It processes one group of rows at a time and generates the result for
that group of rows.

-- Disable map side aggregation
set hive.map.aggr = false;

-- Set the rule using configuration property 'pb.bdq.consolidation.rule'
set pb.bdq.consolidation.rule={"consolidationConditions":
[{"consolidationRule":{"conditionClass":"simpleRule",
"operation":"HIGHEST", "fieldName":"column2", "value":null,
"valueFromField":false, "valueNumeric":true}, "actions":[]}],
"removeDuplicates":true};

-- Set header (along with the id field alias used in the query) using
configuration property 'pb.bdq.consolidation.header'
set
pb.bdq.consolidation.header=column1,column2,column3,column4,column5,id;

-- Set sort field name to alias used in query using configuration
property 'pb.bdq.consolidation.sort.field'
set pb.bdq.consolidation.sort.field=id;

-- Execute Query on the desired table. The query uses a UDF rowid, which
must be present in the query to maintain the ordering of the data while

163Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

reading.

SELECT tmp2.record["column1"],
tmp2.record["column2"],
tmp2.record["column3"],
tmp2.record["column4"],
tmp2.record["column5"]
FROM (
SELECT filter (innerRowID.column1,
innerRowID.column2,
innerRowID.column3,
innerRowID.column4,
innerRowID.column5,
innerRowID.id

) AS matchgroup
FROM (
SELECT column1, column2, column3, column4, column5, rowid(*)
AS id
FROM data
) innerRowID
GROUP BY column3
) AS innerResult
LATERAL VIEW explode(innerResult.matchgroup) tmp2 AS record ;

-- Query to dump the output to a file

INSERT OVERWRITE LOCAL DIRECTORY '/home/hadoop/HiveUDF/filter/'
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
collection items terminated by '||' map keys terminated by ':'
SELECT tmp2.record["column1"],
tmp2.record["column2"],
tmp2.record["column3"],
tmp2.record["column4"],
tmp2.record["column5"]
FROM (
SELECT filter (innerRowID.column1,
innerRowID.column2,
innerRowID.column3,
innerRowID.column4,
innerRowID.column5,
innerRowID.id

) AS matchgroup
FROM (
SELECT column1, column2, column3, column4, column5, rowid(*)
AS id
FROM data
) innerRowID
GROUP BY column3
) AS innerResult
LATERAL VIEW explode(innerResult.matchgroup) tmp2 AS record ;

164Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

--sample input data
--+----------+----------+----------+----------+----------+
--| column1 | column2 | column3 | column4 | column5 |
--+----------+----------+----------+----------+----------+
--| Duplicate| 80 | 98 | | EUNICE L |
--| Suspect | | 98 | | ERIC L BR|
--+----------+----------+----------+----------+----------+

--sample output data
--+----------+----------+----------+----------+----------+
--| column1 | column2 | column3 | column4 | column5 |
--+----------+----------+----------+----------+----------+
--| Suspect | | 98 | | ERIC L BR|
--+----------+----------+----------+----------+----------+

Data Normalization Module Functions

Table Lookup

Sample Hive Script

-- Register Data Normalization Modue [dnm] BDQ Hive UDF Jar
ADD JAR <Directory path>/dnm.hive.${project.version}.jar;

-- Provide alias to UDF class (optional). String in quotes represent
class names needed for this job to run.
-- Table Lookup is implemented as a UDF (User Defined function). Hence
it processes one row at a time and generates a map of key value pairs
for each row.
CREATE TEMPORARY FUNCTION tablelookup as
'com.pb.bdq.dnm.process.hive.tablelookup.TableLookUpUDF';

-- Set rule
set rule='{"rules":[{"action":"Standardize", "source":"CityCode",
"tableName":"State Name Abbreviations", "lookupMultipleWordTerms":false,
"lookupIndividualTermsWithinField":false, "destination":"CityCode"}]}';

-- Set Reference Directory. This must be a local path on cluster machines
and must be present on each node of the cluster at the same path.
set refdir='/home/hadoop/reference';

-- set header
set header ='AccountDescription,Address,ApartmentNumber,CityCode';

165Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

-- Execute Query on the desired table, to display the job output on
console. This query returns a map of key value pairs containing output
fields for each row.

SELECT bar.ret["StandardizationTermIdentified"],
bar.ret["accountdescription"],
bar.ret["address"],
bar.ret["apartmentnumber"],
bar.ret["citycode"]
FROM (
SELECT tablelookup(${hiveconf:rule}, ${hiveconf:refdir},
${hiveconf:header}, accountdescription, address, apartmentnumber,
citycode)
AS ret
FROM citizen_data
) bar;

-- Query to dump output data to a file

INSERT OVERWRITE LOCAL DIRECTORY '/home/hadoop/TableLookup/' row format
delimited FIELDS TERMINATED BY ',' lines terminated by '\n' STORED AS
TEXTFILE
SELECT bar.ret["StandardizationTermIdentified"],
bar.ret["accountdescription"],
bar.ret["address"],
bar.ret["apartmentnumber"],
bar.ret["citycode"]
FROM (
SELECT tablelookup(${hiveconf:rule}, ${hiveconf:refdir},
${hiveconf:header}, accountdescription, address, apartmentnumber,
citycode)
AS ret
FROM citizen_data
) bar;

--Sample input data
--+----------------------------------+-----------------------+-------------------------------+------------------------+
--| citizen_data.accountdescription | citizen_data.address |
citizen_data.apartmentnumber | citizen_data.citycode |
--+----------------------------------+-----------------------+-------------------------------+------------------------+
--| | 400 E M0 St Apt 1405 |

| NY |
--| | 190 E 72nd St |

| NY |
--| | 1381 3rd Ave Apt 4 | 4

| TTYYY |
--+----------------------------------+-----------------------+-------------------------------+------------------------+

--sample output data

166Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

--+------------------------------+--------------------------+-----------------------+-----------------------+----------+

--|StandardizationTermIdentified | accountdescription | address
| apartmentnumber | citycode|

--+------------------------------+--------------------------+-----------------------+-----------------------+----------+

--| yes | | 400 E M0 St Apt 1405 |
| NEW YORK |

--| yes | | 190 E 72nd St
| | NEW YORK |
--| yes | | 1381 3rd Ave Apt 4 | 4

| NEW YORK |
--+------------------------------+--------------------------+-----------------------+-----------------------+----------+

Advanced Transformer

Sample Hive Script

-- Register Data Normalisation Module [DNM] BDQ Hive UDF Jar
ADD JAR <Directory path>/dnm.hive.${project.version}.jar;

-- Provide alias to UDF class (optional). String in quotes represent
class names needed for this job to run.
-- Advanced Transformer is implemented as a UDF (User Defined function).
Hence it processes one row at a time and generates a map of key value
pairs for each row.
CREATE TEMPORARY FUNCTION advanceTransform as
'com.pb.bdq.dnm.process.hive.advancetransformer.AdvanceTransformerUDF';

-- Set rule
set rule='{"rules":[{"extractionType":"TableData", "source":"address",
"nonExtractedData":"address_1", "extractedData":"address_2",
"tokenizationCharacters":"", "tableName":"Street Suffix Abbreviations",
"multipleTermLookup":false, "tokenize":true, "extract":"ExtractTerm",
"includeTermWith":"ExtractedData", "wordsToExtract":2}]}';

-- Set Reference Directory. This must be a local path on cluster machines
and must be present on each node of the cluster at the same path.
set refdir='/home/hadoop/reference/';

-- set header
set header ='AccountDescription,Address';

-- Execute Query on the desired table, to display the job output on
console. This query returns a map of key value pairs containing output
fields for each row.

167Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

SELECT bar.ret["AdvancedTransformTermIdentified"],
bar.ret["accountdescription"],
bar.ret["address"],
bar.ret["address_1"]
FROM (
SELECT advanceTransform(${hiveconf:rule}, ${hiveconf:refdir},
${hiveconf:header}, accountdescription, address)
AS ret
FROM advxformX
) bar;

-- Query to dump output data to a file

INSERT OVERWRITE LOCAL DIRECTORY '/home/hadoop/AdvXformer/' row format
delimited FIELDS TERMINATED BY ',' lines terminated by '\n' STORED AS
TEXTFILE
SELECT bar.ret["AdvancedTransformTermIdentified"],
bar.ret["accountdescription"],
bar.ret["address"],
bar.ret["address_1"]
FROM (
SELECT advanceTransform(${hiveconf:rule}, ${hiveconf:refdir},
${hiveconf:header}, accountdescription, address)
AS ret
FROM advxformX
) bar;

--sample input data
+----------------------------------+---------------------+-----------------------+
| AdvancedTransformTermIdentified | accountdescription | address

|
+----------------------------------+---------------------+-----------------------+
| Yes | | 400 E M0 St Apt 1405
|
| Yes | | 190 E 72nd
St |
+----------------------------------+---------------------+-----------------------+

--sample output data
+----------------------------------+---------------------+-----------------------+--------------------+
| AdvancedTransformTermIdentified | accountdescription | address

| address_1 |
+----------------------------------+---------------------+-----------------------+--------------------+
| Yes | | 400 E M0 St Apt 1405
| 400 E M0 Apt 1405 |
| Yes | | 190 E 72nd
St | 190 E 72nd |

168Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

+----------------------------------+---------------------+-----------------------+--------------------+

Universal Addressing Module Functions

Validate Address

Attention: Before creating and running the first Validate Address job, ensure the Acushare service
is running. For steps, see Running Acushare Service on page 11.

Sample Hive Script

-- Register Universal Addressing Module [UAM-Global] BDQ Hive UDAF Jar

ADD JAR <Directory
path>/uam.universaladdress.hive.${project.version}.jar;

-- Provide alias to UDAF class (optional). String in quotes represent
class names needed for this job to run.
CREATE TEMPORARY FUNCTION uamvalidation as
'com.pb.bdq.uam.process.hive.universaladdress.UAMUSAddressingUDAF';

-- set LD_LIBRARY_PATH(path to modules lib, runtime/lib and runtime/bin),
G1RTS(path containing COBOL runtime) and ACU_RUNCBL_JNI_ONLOAD_DISABLE
in this configuration
set mapreduce.admin.user.env =
LD_LIBRARY_PATH=/home/hduser/~/runtime/lib:
/home/hduser/~/runtime/bin:/home/hduser/~/server/modules/universaladdress/lib,
ACU_RUNCBL_JNI_ONLOAD_DISABLE=1, G1RTS=/home/hduser/~/ ;

set hive.map.aggr = false;

-- set engine configuration
set pb.bdq.uam.universaladdress.engine.configurations={ "referenceData":{

"dataDir":"/home/hduser/resources/uam/universaladdress/UAM_universaladdress4.0_Feb15/",
"referenceDataPathLocation":"LocaltoDataNodes"},
"cobolRuntimePath":"/home/hduser/tapan/addressquality/",
"modulesDir":"/home/hduser/tapan/addressquality/modules",
"dpvDbPath":null, "suiteLinkDBPath":null, "ewsDBPath":null,
"rdiDBPath":null, "lacsDBPath":null};

-- set input configuration

169Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

set
pb.bdq.uam.universaladdress.input.configuration={"outputStandardAddress":true,
"outputPostalData":false, "outputParsedInput":false,
"outputAddressBlocks":true, "performUSProcessing":true,
"performCanadianProcessing":false,
"performInternationalProcessing":false, "outputFormattedOnFail":false,
"outputCasing":"MIXED", "outputPostalCodeSeparator":true,
"outputMultinationalCharacters":false, "performDPV":false,
"performRDI":false, "performESM":false, "performASM":false,
"performEWS":false, "performLACSLink":false, "performLOT":false,
"failOnCMRAMatch":false, "extractFirm":false, "extractUrb":false,
"outputReport3553":false, "outputReportSERP":false,
"outputReportSummary":true, "outputCASSDetail":false,
"outputFieldLevelReturnCodes":false, "keepMultimatch":false,
"maximumResults":10,
"standardAddressFormat":"STANDARD_ADDRESS_FORMAT_COMBINED_UNIT",
"standardAddressPMBLine":"STANDARD_ADDRESS_PMB_LINE_NONE",
"cityNameFormat":"CITY_FORMAT_STANDARD", "vanityCityFormatLong":true,
"outputCountryFormat":"ENGLISH", "homeCountry":"United States",
"streetMatchingStrictness":"MATCHING_STRICTNESS_MEDIUM",
"firmMatchingStrictness":"MATCHING_STRICTNESS_MEDIUM",
"directionalMatchingStrictness":"MATCHING_STRICTNESS_MEDIUM",
"dualAddressLogic":"DUAL_NORMAL", "dpvSuccessfulStatusCondition":"A",
"reportListFileName":"", "reportlistProcessorName":"",
"reportlistNumber":1, "reportMailerAddress":"", "reportMailerName":"",
"reportMailerCityLine":"", "canReportMailerCPCNumber":"",
"canReportMailerAddress":"", "canReportMailerName":"",
"canReportMailerCityLine":"", "internationalCityStreetSearching":100,
"addressLineSearchOnFail":true, "outputStreetAlias":true,
"outputVeriMoveBlock":false, "dpvDetermineNoStat":false,
"dpvDetermineVacancy":false, "outputAbbreviatedAlias":false,
"outputPreferredAlias":false,
"outputPreferredCity":"CITY_OVERRIDE_NAME_ZIP4",
"performSuiteLink":false, "suppressZplusPhantomCarrierR777":false,
"canStandardAddressFormat":"D", "canEnglishApartmentLabel":"APT",
"canFrenchApartmentLabel":"APP", "canFrenchFormat":"C",
"canOutputCityFormat":"D", "canOutputCityAlias":true,
"canDualAddressLogic":"D", "canPreferHouseNum":false,
"canSSLVRFLG":false, "canRuralRouteFormat":"A", "canNonCivicFormat":"A",
"canDeliveryOfficeFormat":"I", "canEnableSERP":false,
"canSwitchManagedPostalCodeConfidence":false, "stats":null,
"counts":null, "z3seg":null, "serpStats":null, "dpvSeedList":null,
"lacsSeedList":null, "zipInputSet":null, "reportName":null,
"currentUser":null, "jobName":null, "jobId":null, "jobRequest":false,
"properties":{"DPVDetermineVacancy":"N", "DualAddressLogic":"N",
"ExtractUrb":"N", "CanFrenchFormat":"C", "AddressLineSearchOnFail":"Y",
"OutputFieldLevelReturnCodes":"N", "OutputFormattedOnFail":"N",
"OutputStreetNameAlias":"Y", "OutputReportSERP":"N",
"OutputAddressBlocks":"Y", "ExtractFirm":"N",
"CanEnglishApartmentLabel":"APT", "OutputPreferredCity":"Z",
"FirmMatchingStrictness":"M", "CanFrenchApartmentLabel":"APP",
"KeepMultimatch":"N", "StandardAddressPMBLine":"N",
"PerformSuiteLink":"N", "CanStandardAddressFormat":"D",

170Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

"DPVSuccessfulStatusCondition":"A", "PerformLACSLink":"N",
"PerformUSProcessing":"Y", "PerformEWS":"N", "StandardAddressFormat":"C",
"SuppressZplusPhantomCarrierR777":"N", "HomeCountry":"United States",
"ReportMailerAddress":"", "OutputReport3553":"N",
"OutputVeriMoveDataBlock":"N", "CanDeliveryOfficeFormat":"I",
"OutputAbbreviatedAlias":"N", "PerformCanadianProcessing":"N",
"PerformDPV":"N", "PerformInternationalProcessing":"N",
"CanSSLVRFlg":"N", "StreetMatchingStrictness":"M",
"InternationalCityStreetSearching":"100",
"canSwitchManagedPostalCodeConfidence":"N", "CanDualAddressLogic":"D",
"PerformASM":"N", "OutputCasing":"M", "ReportListFileName":"",
"CanReportMailerAddress":"", "ReportMailerCityLine":"",
"CanReportMailerCPCNumber":"", "ReportListProcessorName":"",
"CanOutputCityAlias":"Y", "DirectionalMatchingStrictness":"M",
"CanRuralRouteFormat":"A", "CanOutputCityFormat":"D",
"ReportListNumber":"1", "CanReportMailerCityLine":"",
"OutputMultinationalCharacters":"N", "EnableSERP":"N",
"CanNonCivicFormat":"A", "OutputShortCityName":"S",
"OutputPostalCodeSeparator":"Y", "FailOnCMRAMatch":"N", "PerformLOT":"N",
"OutputCountryFormat":"E", "CanPreferHouseNum":"N",
"CanReportMailerName":"", "PerformRDI":"N", "ReportMailerName":"",
"PerformESM":"N", "OutputReportSummary":"Y",
"OutputVanityCityFormatLong":"Y", "OutputPreferredAlias":"N",
"DPVDetermineNoStat":"N", "MaximumResults":"10"}}};

-- set general configuration
set pb.bdq.uam.universaladdress.general.configuration =
{"dFileType":"SPLIT", "dMemoryModel":"MEDIUM",
"lacsLinkMemoryModel":"MEDIUM", "suiteLinkMemoryModel":"MEDIUM"};

-- set reference path
set pb.bdq.reference.data.local.location=/media/New
Volume/hduser/resources/uam/universaladdress/UAM_universaladdress4.0_Feb15;

-- set process type
set pb.bdq.uam.universaladdress.process.type=VALIDATE;

-- set header
set pb.bdq.header=InputKeyValue,FirmName,AddressLine1,AddressLine2,City,
StateProvince,PostalCode,Text;

-- Execute Query on the desired table, to display the job output on
console. This query returns a map of key value pairs containing output
fields for each row.
SELECT tmp2.record["Confidence"], tmp2.record["AddressLine1"] FROM (
select uamvalidation(inputkeyvalue, firmname, addressline1, addressline2,
city, stateprovince, postalcode, text) from uam_us) as addressgroup
LATERAL VIEW explode(addressgroup.mygp) tmp2 as record ;

-- Query to dump output data to a file
INSERT OVERWRITE LOCAL DIRECTORY '/home/hadoop/GlobalAddressing/' row
format delimited FIELDS TERMINATED BY ',' lines terminated by '\n' STORED
AS TEXTFILE

171Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

SELECT tmp2.record["Confidence"], tmp2.record["AddressLine1"] FROM (
select uamvalidation(inputkeyvalue, firmname, addressline1, addressline2,
city, stateprovince, postalcode, text) from uam_us) as addressgroup
LATERAL VIEW explode(addressgroup.mygp) tmp2 as record ;

+-------------------+------------------------------+-----------------+------------------------+---------------------+------------------+
| address.recordid | address.addressline1 | address.city |
address.stateprovince | address.postalcode | address.country |
+-------------------+------------------------------+-----------------+------------------------+---------------------+------------------+
| 1 | 18 Merivale St | South Brisbane |
QLD | 4101 | AUS |
| 2 | 19 Serpentine Rd | Albany |
WA | 6330 | AUS |
| 3 | 317 VICTORIA ST GR | BRUNSWICK |
VIC | 3056 | AUS |
| 4 | DUPLEX 6/16-18 O'CONNELL ST | AINSLIE |
ACT | 2602 | AUS |
| 5 | LOT 154 470 BRYGON CREEK DR | UPPER COOMERA |
QLD | 4209 | AUS |
| 6 | 16 GREENE ST | WARRAWONG |
ACT | 2502 | AUS |
| 7 | UNIT 47/16 BLAIRMOUNT ST | PARKINSON |
QLD | 4115 | AUS |
| 8 | 13-15 FRANCESCO CRES | BELLA VISTA |
NSW | 2153 | AUS |
| 9 | 4 RYANS LANE | HEATHCOTE |
VIC | 3523 | AUS |
| 10 | 1 CHRISTMAS LN | NORTH POLE |
VIC | 1111 | AUS |
+-------------------+------------------------------+-----------------+------------------------+---------------------+------------------+

+-----------+---------------+--------+----------------------------------+---------------+
|Confidence |StreetName |HouseNumber | AddressLine1
| AddressType |

+-----------+---------------+------------+------------------------------+---------------+
| 100.00 | MERIVALE | 18 | 18 MERIVALE ST | S

|
| 99.42 | SERPENTINE | 19 | 19 SERPENTINE RD E |
S |
| 97.95 | VICTORIA | 317 | 317 VICTORIA ST |
S |
| 100.00 | O'CONNELL | 16-18 | DUP 6 16-18 O'CONNELL ST |
S |
| 0.00 | BRYGON CREEK | 470 | LOT 154 470 BRYGON CREEK DR |
U |
| 76.99 | GREENE | 16 | 16 GREENE ST
| S |
| 100.00 | BLAIRMOUNT | 16 | U 47 16 BLAIRMOUNT ST |
S |
| 100.00 | FRANCESCO | 13-15 | 13-15 FRANCESCO CRES |
S |

172Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

| 100.00 | RYANS | 4 | 4 RYANS LANE |
S |
| 0.00 | CHRISTMAS | 1 | 1 CHRISTMAS LN |
U |
+-----------+---------------+------------+------------------------------+---------------+

Validate Address Global

Sample Hive Script

-- Register Universal Addressing Module [UAM-Global] BDQ Hive UDAF Jar

ADD JAR <Directory path>/uam.global.hive.${project.version}.jar;

ADD FILE <Directory path>/libAddressDoctor5.so;

-- Provide alias to UDAF class (optional). String in quotes represent
class names needed for this job to run.
CREATE TEMPORARY FUNCTION globalvalidation as
'com.pb.bdq.uam.process.hive.global.GlobalAddressingUDAF';

set hive.map.aggr = false;

-- set engine configuration
set pb.bdq.uam.global.engine.configurations=[{ "referenceData":
{"dataDir":"/media/New Volume/hduser/resources/uam/addressDoctor/5.8.0/",
"referenceDataPathLocation":"LocaltoDataNodes"},
"databaseType":"BATCH_INTERACTIVE", "preloadingType":"NONE",
"allCountries":false, "supportedCountries":"CAN,USA,AUS"}];

-- set input configuration
set
pb.bdq.uam.global.input.configuration={"resultStateProvinceType":"COUNTRY_STANDARD",
"processMatchingScope":"ALL", "processEnrichmentAMAS":false,
"inputForceCountryISO3":"AUS", "inputDefaultCountryISO3":"AUS",
"inputFormatDelimiter":"CRLF", "resultFormatDelimiter":"CRLF",
"resultIncludeInputs":false, "resultCountryType":"NAME_EN",
"processOptimizationLevel":"STANDARD",
"resultPreferredLanguage":"DATABASE", "processMode":"BATCH",
"resultPreferredScript":"DATABASE", "resultMaximumResults":1,
"resultCasing":"NATIVE",
"properties":{"Result.StateProvinceType":"COUNTRY_STANDARD",
"Process.MatchingScope":"ALL", "Process.EnrichmentAMAS":"false",
"Input.ForceCountryISO3":"AUS", "Input.FormatDelimiter":"CRLF",
"Result.FormatDelimiter":"CRLF", "Input.DefaultCountryISO3":"AUS",
"Result.IncludeInputs":"false", "Result.CountryType":"NAME_EN",
"Process.OptimizationLevel":"STANDARD",

173Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

"Result.PreferredLanguage":"DATABASE", "Process.Mode":"BATCH",
"Result.PreferredScript":"DATABASE", "Result.MaximumResults":"1",
"Result.Casing":"NATIVE", "Database.AddressGlobal":"Database"}};

-- set general configuration
set pb.bdq.uam.global.general.configuration={"cacheSize":"LARGE",
"maxThreadCount":8, "maxAddressObjectCount":8, "rangesToExpand":"NONE",
"flexibleRangeExpansion":"ON", "enableTransactionLogging":false,
"maxMemoryUsageMB":1024};

-- set unlock codec
set pb.bdq.uam.global.unlockCode=<Insert your Unlock Code here>;

-- set header
set
pb.bdq.header=recordid,AddressLine1,City,StateProvince,PostalCode,Country;

-- Execute Query on the desired table, to display the job output on
console. This query returns a map of key value pairs containing output
fields for each row.
SELECT tmp2.record["HouseNumber"], tmp2.record["Confidence"],
tmp2.record["AddressLine1"], tmp2.record["StreetName"],
tmp2.record["PostalCode"], tmp2.record["ElementInputStatus"],
tmp2.record["MailabilityScore"] FROM (SELECT globalvalidation(recordid,
addressline1, city, stateprovince, postalcode, country) as mygp from
address) as addressgroup LATERAL VIEW explode(addressgroup.mygp) tmp2
as record ;

-- Query to dump output data to a file
INSERT OVERWRITE LOCAL DIRECTORY '/home/hadoop/GlobalAddressing/' row
format delimited FIELDS TERMINATED BY ',' lines terminated by '\n' STORED
AS TEXTFILE
SELECT tmp2.record["HouseNumber"], tmp2.record["Confidence"],
tmp2.record["AddressLine1"], tmp2.record["StreetName"],
tmp2.record["PostalCode"], tmp2.record["ElementInputStatus"],
tmp2.record["MailabilityScore"] FROM (SELECT globalvalidation(recordid,
addressline1, city, stateprovince, postalcode, country) as mygp from
address) as addressgroup LATERAL VIEW explode(addressgroup.mygp) tmp2
as record ;

+-------------------+------------------------------+-----------------+------------------------+---------------------+------------------+
| address.recordid | address.addressline1 | address.city |
address.stateprovince | address.postalcode | address.country |
+-------------------+------------------------------+-----------------+------------------------+---------------------+------------------+
| 1 | 18 Merivale St | South Brisbane |
QLD | 4101 | AUS |
| 2 | 19 Serpentine Rd | Albany |
WA | 6330 | AUS |
| 3 | 317 VICTORIA ST GR | BRUNSWICK |
VIC | 3056 | AUS |
| 4 | DUPLEX 6/16-18 O'CONNELL ST | AINSLIE |
ACT | 2602 | AUS |

174Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

| 5 | LOT 154 470 BRYGON CREEK DR | UPPER COOMERA |
QLD | 4209 | AUS |
| 6 | 16 GREENE ST | WARRAWONG |
ACT | 2502 | AUS |
| 7 | UNIT 47/16 BLAIRMOUNT ST | PARKINSON |
QLD | 4115 | AUS |
| 8 | 13-15 FRANCESCO CRES | BELLA VISTA |
NSW | 2153 | AUS |
| 9 | 4 RYANS LANE | HEATHCOTE |
VIC | 3523 | AUS |
| 10 | 1 CHRISTMAS LN | NORTH POLE |
VIC | 1111 | AUS |
+-------------------+------------------------------+-----------------+------------------------+---------------------+------------------+

+-----------+---------------+--------+----------------------------------+---------------+
|Confidence |StreetName |HouseNumber | AddressLine1
| AddressType |

+-----------+---------------+------------+------------------------------+---------------+
| 100.00 | MERIVALE | 18 | 18 MERIVALE ST | S

|
| 99.42 | SERPENTINE | 19 | 19 SERPENTINE RD E |
S |
| 97.95 | VICTORIA | 317 | 317 VICTORIA ST |
S |
| 100.00 | O'CONNELL | 16-18 | DUP 6 16-18 O'CONNELL ST |
S |
| 0.00 | BRYGON CREEK | 470 | LOT 154 470 BRYGON CREEK DR |
U |
| 76.99 | GREENE | 16 | 16 GREENE ST
| S |
| 100.00 | BLAIRMOUNT | 16 | U 47 16 BLAIRMOUNT ST |
S |
| 100.00 | FRANCESCO | 13-15 | 13-15 FRANCESCO CRES |
S |
| 100.00 | RYANS | 4 | 4 RYANS LANE |
S |
| 0.00 | CHRISTMAS | 1 | 1 CHRISTMAS LN |
U |

175Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

+-----------+---------------+------------+------------------------------+---------------+

Validate Address Loqate

Sample Hive Script

-- Register Universal Address Module [UAM] BDQ Hive Loqate UDAF Jar
ADD JAR <Directory path>/uam.loqate.hive.${project.version}.jar;

-- Provide alias to UDAF class (optional). String in quotes represent
class names needed for this job to run.
CREATE TEMPORARY FUNCTION loqatevalidation as
'com.pb.bdq.uam.process.hive.loqate.LoqateAddressingUDAF';

-- Adding required files to distributed cache.
ADD FILES <Directory Path>/loqate-core.car;
ADD FILES <Directory Path>/LoqateVerificationLevel.csv;
ADD FILES <Directory Path>/Loqate.csv;
ADD FILES <Directory Path>/countryTables.csv;
ADD FILES <Directory Path>/countryNameTables.csv;

set hive.map.aggr = false;

-- set process configuration
set pb.bdq.uam.loqate.process.configuration={"processType":"VALIDATE",
"includeMatchedAddressElements":true,
"standardizedInputAddressElements":true, "returnAddressDataBlocks":true,
"casing":"Mixed", "outputReportSummary":false,
"returnMultipleAddresses":false, "failedOnMultiMatchFound":false,
"countryFormat":"ENGLISH", "defaultCountry":"USA",
"scriptAlphabet":"Native", "returnGeocodedAddressFields":true,
"acceptanceLevel":"Level0", "minimumMatchScore":0,
"formatDataUsingAMASConventions":false,
"singleFieldDuplicateHandling":false,
"multiFieldDuplicateHandling":false,
"nonStandardFieldDuplicateHandling":false,
"outputFieldDuplicateHandling":false, "includeStandardAddress":true,
"duplicateHandling":false, "returnMultipleAddressCount":10};

-- set general configuration
set pb.bdq.uam.loqate.general.configuration={"maxIdle":null,
"minIdle":16, "maxActive":16, "maxWait":null, "whenExhaustedAction":null,
"testOnBorrow":null, "testOnReturn":null, "testWhileIdle":null,
"timeBetweenEvictionRunsMillis":null, "numTestsPerEvictionRun":null,
"minEvictableIdleTimeMillis":null};

-- set engine configuration

176Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

set pb.bdq.uam.loqate.engine.configuration={"verbose":true,
"toolInfo":true, "outputAddressFormat":false, "logInput":false,
"logOutput":false, "logFileName":null, "matchScoreAbsoluteThreshold":60,
"matchScoreThresholdFactor":95, "postalCodeMaxResults":10,
"strictReferenceMatch":false};

-- set reference directory path
set pb.bdq.referencedata.dir=/media/New
Volume/hduser/resources/uam/loqate/Linux;

-- set process type
set pb.bdq.uam.loqate.process.type=VALIDATE;

-- set input header
set pb.bdq.header='InputKeyValue,AddressLine1,AddressLine2,AddressLine3,
AddressLine4,City,StateProvince,PostalCode,Country,FirmName';

select SELECT tmp2.record["HouseNumber"], tmp2.record["Confidence"],
tmp2.record["AddressLine1"], tmp2.record["StreetName"],
tmp2.record["PostalCode"], tmp2.record["DPID"], tmp2.record["Barcode"]
FROM (SELECT loqatevalidation(recordid, addressline1, city,
stateprovince, postalcode, country) as mygp from address) as <TABLE_NAME>
LATERAL VIEW explode(addressgroup.mygp) tmp2 as record ;

-- Query to dump output data to a file
INSERT OVERWRITE LOCAL DIRECTORY '/home/hadoop/loqate/' row format
delimited FIELDS TERMINATED BY ',' lines terminated by '\n' STORED AS
TEXTFILE SELECT * FROM (SELECT tmp2.record["HouseNumber"],
tmp2.record["Confidence"], tmp2.record["AddressLine1"],
tmp2.record["StreetName"], tmp2.record["PostalCode"],
tmp2.record["DPID"], tmp2.record["Barcode"] FROM (SELECT
loqatevalidation(recordid, addressline1, city, stateprovince, postalcode,
country) as mygp from address) as <TABLE_NAME> LATERAL VIEW
explode(addressgroup.mygp) tmp2 as record ;

--Sample Input
+----------------+------------------------------------+----------------+-------------+---------------+
| inputkeyvalue | addressline1 | stateprovince
| postalcode | country |
+----------------+------------------------------------+----------------+-------------+---------------+
1	80 Quan Su
	Vietnam
2	Final Av. Panteón Foro Libertador
1010	Venezuela
3	P O Box 834
	St Vincent
4	Colonia 2066
	Uruguay
5	Ave de la Resistance BP127
	Burkina Faso
6	Buyuk Turon Street, 41

177Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

| | Uzbekistan |
| 7 | Empire State Building | NY
10118	US
8	3 Leontovycha St
	Ukraine
9	
	Wales
10	5 Main Street
	Scotland
+----------------+------------------------------------+----------------+-------------+---------------+

-- Sample Output
+-----------+---------------+--------+---+------------------------------------+
|Match Score|StreetName |HouseNumber | addressline1

|
+-----------+---------------+------------+------------------------------------+
| 100.00 | MERIVALE | 80 | 80 Quan Su
|

| 100.00 | SERPENTINE | | Final Av. Panteón Foro Libertador
|

| 0.00 | VICTORIA | 0 | P O Box 834
|

| 75.00 | O'CONNELL | 2066 | Colonia 2066
|

| 83.33 | BRYGON CREEK | 470 | Ave de la Resistance BP127
|

| 100.00 | GREENE | | Buyuk Turon Street, 41
|

| 96.8254 | BLAIRMOUNT | 41 | Empire State Building
|

| 83.950 | FRANCESCO | 350 | 3 Leontovycha St
|

| 50.00 | RYANS | 3 |
|

| 100 | CHRISTMAS | 5 | 5 Main Street
|

+-----------+---------------+------------+------------------------------------+

!quit

178Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

Universal Name Module Functions

Open Name Parser

Sample Hive Script

-- Register Universal Name Module [UNM] BDQ Hive UDF Jar
ADD JAR <Directory path>/unm.hive.${project.version}.jar;

-- Provide alias to UDF class (optional). String in quotes represent
class names needed for this job to run.
-- Open Name Parser is implemented as a UDF (User Defined function).
Hence it processes one row at a time and generates a map of key value
pairs for each row.
CREATE TEMPORARY FUNCTION opennameparser as
'com.pb.bdq.unm.process.hive.opennameparser.OpenNameParserUDF';

-- set rule
set rule='{"name":"name", "culture":"", "splitConjoinedNames":false,
"shortcutThreshold":0, "parseNaturalOrderPersonalNames":false,
"naturalOrderPersonalNamesPriority":1,
"parseReverseOrderPersonalNames":false,
"reverseOrderPersonalNamesPriority":2, "parseConjoinedNames":false,
"naturalOrderConjoinedPersonalNamesPriority":3,
"reverseOrderConjoinedPersonalNamesPriority":4,
"parseBusinessNames":false, "businessNamesPriority":5}';

-- Set Reference Directory. This must be a local path on cluster machines
and must be present at the same path on each node of the cluster.
set refdir='/home/hadoop/reference/';

-- set header
set header='inputrecordid,Name,nametype';

-- Execute Query on the desired table, to display the job output on
console. This query returns a map of key value pairs containing output
fields for each row.
select adTable.adid["Name"], adTable.adid["NameScore"],
adTable.adid["CultureCode"] from (select opennameparser(${hiveconf:rule},
${hiveconf:refdir}, ${hiveconf:header}, inputrecordid, name, nametype)
as tmp1 from nameparser) as tmp LATERAL VIEW explode(tmp1) adTable AS
adid;

179Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

-- Query to dump output data to a file
INSERT OVERWRITE LOCAL DIRECTORY '/home/hadoop/opennameparser/' row
format delimited FIELDS TERMINATED BY ',' lines terminated by '\n' STORED
AS TEXTFILE
select adTable.adid["Name"], adTable.adid["NameScore"],
adTable.adid["CultureCode"] from (select opennameparser(${hiveconf:rule},
${hiveconf:refdir}, ${hiveconf:header}, inputrecordid, name, nametype)
as tmp1 from nameparser) as tmp LATERAL VIEW explode(tmp1) adTable AS
adid;

--sample input data
+----------------------------------+--------------------------+-----------------------+
| inputrecordid | name | nametype |
+----------------------------------+--------------------------+-----------------------+
| 1 |JOHN VAN DER LINDEN-JONES |
Simple Name |
| 2 |RYAN JOHN SMITH | Simple
Name |
+----------------------------------+--------------------------+-----------------------+

--sample output data
+----------------------------+--------------+---------------------+
| Name | NameScore | CultureCode |
+----------------------------+--------------+---------------------+
| JOHN VAN DER LINDEN-JONES | 75 | True |
| RYAN JOHN SMITH | 100 | True |
+----------------------------+-----+------------------------------+

180Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Hive User-Defined Functions

Appendix

In this section

Exceptions 182
Enums 184
ISO Country Codes and Module Support 197

A - Exceptions

In this section

Exception Messages 183

Exception Messages

Exceptions - Java API

• <Classname>.<Member> is null or empty.
• GroupbyMROption.numReduceTasks = 0 min values should be 1.
• maxNumOfDuplicates = 0 min values should be 1.
• No files available in the specified path.
• Unable to identify the input file as either Suspect or Candidate File.
• ExpressMatchKey defined but not available for the record\t
• Unable to get the FileName of the InputSplit.
• Unable to initialize engine.
• Error processing consolidated records:

Exceptions - Hive User-Defined Functions

• _FUNC_ must have the minimum arguments.
• Unable to initialize engine. Rule passed: <Rule used>

• Expected argument type: String. Received argument type: <Mismatched Type>

• Exception: <Header string> configuration missing.
• Error processing consolidated records: <Exception details>

• Exception: Sort field column <column name> missing from job configuration.

183Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Exceptions

B - Enums

In this section

Common Enumerations 185
Universal Addressing Enumerations 188

Common Enumerations

Enum MatchingAlgorithm
Package: com.pb.bdq.api.matcher

Class: Algorithm

1. Acronym
2. CharacterFrequency
3. DaitchMokotoffSoundex
4. Date
5. DoubleMetaphone
6. EditDistance
7. EuclideanDistance
8. ExactMatch
9. Initials
10. JaroWinklerDistance
11. KeyboardDistance
12. Koeln
13. KullbackLeiblerDistance
14. Metaphone
15. SpanishMetaphone
16. Metaphone3
17. NGramDistance
18. NGramSimilarity
19. NumericString
20. Nysiis
21. Phonix
22. Soundex
23. SubString
24. SyllableAlignment

Enum Algorithm
Package: com.pb.bdq.api.matchkeygenerator

Class: MatchKeyRule

1. Soundex
2. Metaphone
3. SpanishMetaphone
4. DoubleMetaphone
5. Nysiis

185Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Enums

6. Phonix
7. Metaphone3
8. Koeln
9. Consonant
10. SubString

Enum RecordSeparator
Package: com.pb.bdq.common.job

Class: FilePath

1. WINDOWS
2. LINUX
3. MACINTOSH

Enum ReferenceDataPathLocation
Package: com.pb.bdq.common.job

DescriptionEnum Constant

The Reference Data is placed on an HDFS directory.HDFS

The Reference Data is placed on all available data nodes in the cluster.LocaltoDataNodes

Enum Operation
Package: com.pb.bdq.api.consolidation

1. CONTAINS
2. HIGHEST
3. LOWEST
4. NOT_EQUAL
5. GREATER
6. LESSER
7. EQUAL
8. GREATER_THAN_EQUAL_TO
9. LESS_THAN_EQUAL_TO
10. IS_EMPTY
11. IS_NOT_EMPTY
12. MOST_COMMON
13. LONGEST
14. SHORTEST

Enum MatchingMethod
Package: com.pb.bdq.api.matcher

186Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Enums

Class: ParentMatchRule

1. AllTrue
2. AnyTrue
3. BasedOnThreshold

Enum ScoringMethod
Package: com.pb.bdq.api.matcher

Class: MatchRule

1. Minimum
2. Maximum
3. Average
4. WeightedAverage
5. VectorSummation

Enum MissingDataMethod
Package: com.pb.bdq.api.matcher

Class: MatchRule

1. IgnoreBlanks
2. CountAs100
3. CountAs0
4. CompareBlanks

Enum JoinType
Package: com.pb.bdq.api.consolidation

Class: ConjoinedRule

1. OR
2. AND

Enum IncludeTerm
Package: com.pb.bdq.api.advtransformer

Class: TableDataExtraction

1. ExtractedData
2. NonExtractedData
3. TermNeither

Enum Extract
Package: com.pb.bdq.api.advtransformer

Class: TableDataExtraction

1. ExtractTerm

187Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Enums

2. ExtractNWordsLeft
3. ExtractNWordsRight

Enum AdvTransformerExtractionType
Package: com.pb.bdq.api.advtransformer

Class: AbstractAdvancedTransformerRules

1. TableData
2. RegularExpression

Enum MatchRuleType
Package: com.pb.bdq.api.matcher

Class: MatchRule

1. Parent
2. Child

Enum SortInput
Package: com.pb.bdq.api.matcher

Class: MatchRule

1. CHARS
2. TERMS

Enum TableLookupAction
Package: com.pb.bdq.api.tablelookup

Class: AbstractTableLookupRule

1. Standardize
2. Categorize
3. Identify

Universal Addressing Enumerations

Enum DatabaseType
Package: com.pb.bdq.api.uam.global

Class: GlobalAddressingEngineConfiguration

1. BATCH_INTERACTIVE
2. FASTCOMPLETION
3. CERTIFIED

188Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Enums

Enum PreloadingType
Package: com.pb.bdq.api.uam.global

Class: GlobalAddressingEngineConfiguration

1. NONE
2. FULL
3. PARTIAL

Enum CountryCodes
Package: com.pb.bdq.api.uam

Description: Alphabetical codes assigned to all supported countries.

Enum StateProvinceType
Package: com.pb.bdq.api.uam.global

Interface: GlobalAddressingInputOption

1. COUNTRY_STANDARD
2. ABBREVIATION
3. EXTENDED

Enum CountryType
Package: com.pb.bdq.api.uam.global

Interface: GlobalAddressingInputOption

1. ISO2
2. ISO3
3. ISO_NUMBER
4. NAME_CN
5. NAME_DA
6. NAME_DE
7. NAME_EN
8. NAME_ES
9. NAME_FI
10. NAME_FR
11. NAME_GR
12. NAME_HU
13. NAME_IT
14. NAME_JP
15. NAME_KR
16. NAME_NL
17. NAME_PL
18. NAME_PT
19. NAME_RU

189Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Enums

20. NAME_SA
21. NAME_SE

Enum PreferredScript
Package: com.pb.bdq.api.uam.global

Interface: GlobalAddressingInputOption

1. DATABASE
2. POSTAL_ADMIN_PREF
3. POSTAL_ADMIN_ALT
4. LATIN
5. LATIN_ALT
6. ASCII_SIMPLIFIED
7. ASCII_EXTENDED

Enum PreferredLanguage
Package: com.pb.bdq.api.uam.global

Interface: GlobalAddressingInputOption

1. DATABASE
2. ENGLISH

Enum Casing
Package: com.pb.bdq.api.uam.global

Interface: GlobalAddressingInputOption

1. NATIVE
2. UPPER
3. LOWER
4. MIXED
5. NOCHANGE

Enum OptimizationLevel
Package: com.pb.bdq.api.uam.global

Interface: GlobalAddressingInputOption

1. NARROW
2. STANDARD
3. WIDE

Enum Mode
Package: com.pb.bdq.api.uam.global

Interface: GlobalAddressingInputOption

190Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Enums

1. BATCH
2. CERTIFIED
3. FASTCOMPLETION
4. INTERACTIVE
5. PARSE

Enum MatchingScope
Package: com.pb.bdq.api.uam.global

Interface: GlobalAddressingInputOption

1. ALL
2. LOCALITY_LEVEL
3. STREET_LEVEL
4. DELIVERYPOINT_LEVEL

Enum FormatDelimiter
Package: com.pb.bdq.api.uam.global

Interface: GlobalAddressingInputOption

1. CRLF
2. LF
3. CR
4. SEMICOLON
5. COMMA
6. TAB
7. PIPE
8. SPACE

Enum ExhaustedAction
Package: com.pb.bdq.api.uam.loqate

Class: LoqateAddressingGeneralConfiguration

1. GROW
2. BLOCK
3. FAIL

Enum AcceptanceLevel
Package: com.pb.bdq.api.uam.loqate.validate

Class: LoqateAddressingValidateConfiguration

1. Level0
2. Level1
3. Level2
4. Level3

191Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Enums

5. Level4
6. Level5

Enum OutputCasing
Package: com.pb.bdq.api.uam.loqate.validate

Class: LoqateAddressingValidateConfiguration

1. Mixed
2. Upper

Enum CountryFormat
Package: com.pb.bdq.api.uam.loqate.validate

Class: LoqateAddressingValidateConfiguration

1. ENGLISH
2. ISO
3. UPU

Enum ScriptAlphabet
Package: com.pb.bdq.api.uam.loqate.validate

Class: LoqateAddressingValidateConfiguration

1. InputScript
2. Native
3. Latin_English

Enum CacheSize
Package: com.pb.bdq.api.uam.global

Class: GlobalAddressingGeneralConfiguration

1. NONE
2. SMALL
3. LARGE

Enum RangesToExpand
Package: com.pb.bdq.api.uam.global

Class: GlobalAddressingGeneralConfiguration

1. NONE
2. ONLY_WITH_VALID_ITEMS

Enum FlexibleRangeExpansion
Package: com.pb.bdq.api.uam.global

Class: GlobalAddressingGeneralConfiguration

192Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Enums

1. ON
2. OFF

Enum CasingType
Package: com.pb.bdq.api.universaladdress

Class: UniversalAddressInputConfiguration

1. MIXED
2. UPPER

Enum CityNameFormat
Package: com.pb.bdq.api.universaladdress

Class: UniversalAddressInputConfiguration

1. CITY_FORMAT_LONG
2. CITY_FORMAT_SHORT
3. CITY_FORMAT_STANDARD

Enum OutputCountryFormat
Package: com.pb.bdq.api.universaladdress

Class: UniversalAddressInputConfiguration

1. ENGLISH
2. FRENCH
3. GERMAN
4. SPANISH
5. ISO
6. UPU

Enum DualAddressLogic
Package: com.pb.bdq.api.universaladdress

Class: UniversalAddressInputConfiguration

1. DUAL_NORMAL
2. DUAL_PO_BOX
3. DUAL_STREET

Enum StandardAddressFormat
Package: com.pb.bdq.api.universaladdress

Class: UniversalAddressInputConfiguration

1. STANDARD_ADDRESS_FORMAT_COMBINED_UNIT
2. STANDARD_ADDRESS_FORMAT_SEPARATE_UNIT
3. STANDARD_ADDRESS_FORMAT_SEPARATE_DUAL

193Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Enums

Enum StreetMatchingStrictness
Package: com.pb.bdq.api.universaladdress

Class: UniversalAddressInputConfiguration

1. MATCHING_STRICTNESS_EQUAL
2. MATCHING_STRICTNESS_TIGHT
3. MATCHING_STRICTNESS_MEDIUM
4. MATCHING_STRICTNESS_LOOSE

Enum FirmMatchingStrictness
Package: com.pb.bdq.api.universaladdress

Class: UniversalAddressInputConfiguration

1. MATCHING_STRICTNESS_EQUAL
2. MATCHING_STRICTNESS_TIGHT
3. MATCHING_STRICTNESS_MEDIUM
4. MATCHING_STRICTNESS_LOOSE

Enum DirectionalMatchingStrictness
Package: com.pb.bdq.api.universaladdress

Class: UniversalAddressInputConfiguration

1. MATCHING_STRICTNESS_EQUAL
2. MATCHING_STRICTNESS_TIGHT
3. MATCHING_STRICTNESS_MEDIUM
4. MATCHING_STRICTNESS_LOOSE

Enum StandardAddressPMBLine
Package: com.pb.bdq.api.universaladdress

Class: UniversalAddressInputConfiguration

1. STANDARD_ADDRESS_PMB_LINE_NONE
2. STANDARD_ADDRESS_PMB_LINE_1
3. STANDARD_ADDRESS_PMB_LINE_2

Enum PreferredCity
Package: com.pb.bdq.api.universaladdress

Class: UniversalAddressInputConfiguration

1. CITY_OVERRIDE_NAME_ZIP4
2. CITY_USPS_STATE_FILE
3. CITY_PRIMARY_NAME

Enum DPVFileType
Package: com.pb.bdq.api.universaladdress

194Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Enums

Class: UniversalAddressGeneralConfiguration

1. SPLIT
2. FULL
3. FLAT

Enum DPVMemoryModel
Package: com.pb.bdq.api.universaladdress

Class: UniversalAddressGeneralConfiguration

1. PICO
2. MICRO
3. SMALL
4. MEDIUM
5. LARGE
6. HUGE

Enum LacsLinkMemoryModel
Package: com.pb.bdq.api.universaladdress

Class: UniversalAddressGeneralConfiguration

1. PICO
2. MICRO
3. SMALL
4. MEDIUM
5. LARGE
6. HUGE

Enum SuiteLinkMemoryModel
Package: com.pb.bdq.api.universaladdress

Class: UniversalAddressGeneralConfiguration

1. PICO
2. MICRO
3. SMALL
4. MEDIUM
5. LARGE
6. HUGE

Enum DPVSuccessStatusCondition
Package: com.pb.bdq.api.universaladdress

Class: UniversalAddressInputConfiguration

1. DPV_CONDITON_FULL

195Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Enums

2. DPV_CONDITON_PARTIAL
3. DPV_CONDITON_ALWAYS

Enum UAMCASSReportType
Package: com.pb.bdq.uam.common

1. CASS_3553
2. CASS_DETAIL
3. CASS_DETAIL2
4. CASS_DETAIL3

196Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Enums

C - ISO Country Codes
and Module Support

In this section

ISO Country Codes and Module Support 198

ISO Country Codes and Module Support

The table lists the two-digit and three-digit ISO codes for each country.

ISO 3116-1 Alpha-3ISO 3116-1 Alpha-2ISO Country Name

AFGAFAfghanistan

ALAAXAland Islands

ALBALAlbania

DZADZAlgeria

ASMASAmerican Samoa

ANDADAndorra

AGOAOAngola

AIAAIAnguilla

ATAAQAntarctica

ATGAGAntigua And Barbuda

ARGARArgentina

ARMAMArmenia

198Big Data Quality SDK 12.0 Big Data Quality SDK Guide

ISO Country Codes and Module Support

ISO 3116-1 Alpha-3ISO 3116-1 Alpha-2ISO Country Name

ABWAWAruba

AUSAUAustralia

AUTATAustria

AZEAZAzerbaijan

BHSBSBahamas

BHRBHBahrain

BGDBDBangladesh

BRBBBBarbados

BLRBYBelarus

BELBEBelgium

BLZBZBelize

BENBJBenin

BMUBMBermuda

BTNBTBhutan

199Big Data Quality SDK 12.0 Big Data Quality SDK Guide

ISO Country Codes and Module Support

ISO 3116-1 Alpha-3ISO 3116-1 Alpha-2ISO Country Name

BOLBOBolivia, Plurinational State Of

BESBQBonaire, Saint Eustatius And Saba

BIHBABosnia And Herzegovina

BWABWBotswana

BVTBVBouvet Island

BRABRBrazil

IOTIOBritish Indian Ocean Territory

BRNBNBrunei Darussalam

BGRBGBulgaria

BFABFBurkina Faso

BDIBIBurundi

KHMKHCambodia

CMRCMCameroon

CANCACanada

200Big Data Quality SDK 12.0 Big Data Quality SDK Guide

ISO Country Codes and Module Support

ISO 3116-1 Alpha-3ISO 3116-1 Alpha-2ISO Country Name

CPVCVCape Verde

CYMKYCayman Islands

CAFCFCentral African Republic

TCDTDChad

CHLCLChile

CHNCNChina

CXRCXChristmas Island

CCKCCCocos (Keeling) Islands

COLCOColombia

COMKMComoros

COGCGCongo

CODCDCongo, The Democratic Republic Of The

COKCKCook Islands

CRICRCosta Rica

201Big Data Quality SDK 12.0 Big Data Quality SDK Guide

ISO Country Codes and Module Support

ISO 3116-1 Alpha-3ISO 3116-1 Alpha-2ISO Country Name

CIVCICôte d'Ivoire

HRVHRCroatia

CUBCUCuba

CUWCWCuracao

CYPCYCyprus

CZECZCzech Republic

DNKDKDenmark

DJIDJDjibouti

DMADMDominica

DOMDODominican Republic

ECUECEcuador

EGYEGEgypt

SLVSVEl Salvador

GNQGQEquatorial Guinea

202Big Data Quality SDK 12.0 Big Data Quality SDK Guide

ISO Country Codes and Module Support

ISO 3116-1 Alpha-3ISO 3116-1 Alpha-2ISO Country Name

ERIEREritrea

ESTEEEstonia

ETHETEthiopia

FLKFKFalkland Islands (Malvinas)

FROFOFaroe Islands

FJIFJFiji

FINFIFinland

FRAFRFrance

GUFGFFrench Guiana

PYFPFFrench Polynesia

ATFTFFrench Southern Territories

GABGAGabon

GMBGMGambia

GEOGEGeorgia

203Big Data Quality SDK 12.0 Big Data Quality SDK Guide

ISO Country Codes and Module Support

ISO 3116-1 Alpha-3ISO 3116-1 Alpha-2ISO Country Name

DEUDEGermany

GHAGHGhana

GIBGIGibraltar

GRCGRGreece

GRLGLGreenland

GRDGDGrenada

GLPGPGuadeloupe

GUMGUGuam

GTMGTGuatemala

GGYGGGuernsey

GINGNGuinea

GNBGWGuinea-Bissau

GUYGYGuyana

HTIHTHaiti

204Big Data Quality SDK 12.0 Big Data Quality SDK Guide

ISO Country Codes and Module Support

ISO 3116-1 Alpha-3ISO 3116-1 Alpha-2ISO Country Name

HMDHMHeard Island and McDonald Islands

VATVAHoly See (Vatican City State)

HNDHNHonduras

HKGHKHong Kong

HUNHUHungary

ISLISIceland

INDINIndia

IDNIDIndonesia

IRNIRIran, Islamic Republic Of

IRQIQIraq

IRLIEIreland

IMNIMIsle Of Man

ISRILIsrael

ITAITItaly

205Big Data Quality SDK 12.0 Big Data Quality SDK Guide

ISO Country Codes and Module Support

ISO 3116-1 Alpha-3ISO 3116-1 Alpha-2ISO Country Name

JAMJMJamaica

JPNJPJapan

JEYJEJersey

JORJOJordan

KAZKZKazakhstan

KENKEKenya

KIRKIKiribati

PRKKPKorea, Democratic People's Republic Of

KORKRKorea, Republic Of

KOSKSKosovo

KWTKWKuwait

KGZKGKyrgyzstan

LAOLALao People's Democratic Republic

LVALVLatvia

206Big Data Quality SDK 12.0 Big Data Quality SDK Guide

ISO Country Codes and Module Support

ISO 3116-1 Alpha-3ISO 3116-1 Alpha-2ISO Country Name

LBNLBLebanon

LSOLSLesotho

LBRLRLiberia

LBYLYLibyan Arab Jamahiriya

LIELILiechtenstein

LTULTLithuania

LUXLULuxembourg

MACMOMacao

MKDMKMacedonia, Former Yugoslav Republic Of

MDGMGMadagascar

MWIMWMalawi

MYSMYMalaysia

MDVMVMaldives

MLIMLMali

207Big Data Quality SDK 12.0 Big Data Quality SDK Guide

ISO Country Codes and Module Support

ISO 3116-1 Alpha-3ISO 3116-1 Alpha-2ISO Country Name

MLTMTMalta

MHLMHMarshall Islands

MTQMQMartinique

MRTMRMauritania

MUSMUMauritius

MYTYTMayotte

MEXMXMexico

FSMFMMicronesia, Federated States Of

MDAMDMoldova, Republic Of

MCOMCMonaco

MNGMNMongolia

MNEMEMontenegro

MSRMSMontserrat

MARMAMorocco

208Big Data Quality SDK 12.0 Big Data Quality SDK Guide

ISO Country Codes and Module Support

ISO 3116-1 Alpha-3ISO 3116-1 Alpha-2ISO Country Name

MOZMZMozambique

MMRMMMyanmar

NAMNANamibia

NRUNRNauru

NPLNPNepal

NLDNLNetherlands

NCLNCNew Caledonia

NZLNZNew Zealand

NICNINicaragua

NERNENiger

NGANGNigeria

NIUNUNiue

NFKNFNorfolk Island

MNPMPNorthern Mariana Islands

209Big Data Quality SDK 12.0 Big Data Quality SDK Guide

ISO Country Codes and Module Support

ISO 3116-1 Alpha-3ISO 3116-1 Alpha-2ISO Country Name

NORNONorway

OMNOMOman

PAKPKPakistan

PLWPWPalau

PSEPSPalestinian Territory, Occupied

PANPAPanama

PNGPGPapua New Guinea

PRYPYParaguay

PERPEPeru

PHLPHPhilippines

PCNPNPitcairn

POLPLPoland

PRTPTPortugal

PRIPRPuerto Rico

210Big Data Quality SDK 12.0 Big Data Quality SDK Guide

ISO Country Codes and Module Support

ISO 3116-1 Alpha-3ISO 3116-1 Alpha-2ISO Country Name

QATQAQatar

REUREReunion

ROURORomania

RUSRURussian Federation

RWARWRwanda

BLMBLSaint Barthelemy

SHESHSaint Helena, Ascension & Tristan Da Cunha

KNAKNSaint Kitts and Nevis

LCALCSaint Lucia

MAFMFSaint Martin (French Part)

SPMPMSaint Pierre and Miquelon

VCTVCSaint Vincent and the Grenadines

WSMWSSamoa

SMRSMSan Marino

211Big Data Quality SDK 12.0 Big Data Quality SDK Guide

ISO Country Codes and Module Support

ISO 3116-1 Alpha-3ISO 3116-1 Alpha-2ISO Country Name

STPSTSao Tome and Principe

SAUSASaudi Arabia

SENSNSenegal

SRBRSSerbia

SYCSCSeychelles

SLESLSierra Leone

SGPSGSingapore

SXMSXSint Maarten (Dutch Part)

SVKSKSlovakia

SVNSISlovenia

SLBSBSolomon Islands

SOMSOSomalia

ZAFZASouth Africa

SGSGSSouth Georgia And The South Sandwich Islands

212Big Data Quality SDK 12.0 Big Data Quality SDK Guide

ISO Country Codes and Module Support

ISO 3116-1 Alpha-3ISO 3116-1 Alpha-2ISO Country Name

SSDSSSouth Sudan

ESPESSpain

LKALKSri Lanka

SDNSDSudan

SURSRSuriname

SJMSJSvalbard And Jan Mayen

SWZSZSwaziland

SWESESweden

CHECHSwitzerland

SYRSYSyrian Arab Republic

TWNTWTaiwan, Province of China

TJKTJTajikistan

TZATZTanzania, United Republic Of

THATHThailand

213Big Data Quality SDK 12.0 Big Data Quality SDK Guide

ISO Country Codes and Module Support

ISO 3116-1 Alpha-3ISO 3116-1 Alpha-2ISO Country Name

TLSTLTimor-Leste

TGOTGTogo

TKLTKTokelau

TONTOTonga

TTOTTTrinidad and Tobago

TUNTNTunisia

TURTRTurkey

TKMTMTurkmenistan

TCATCTurks And Caicos Islands

TUVTVTuvalu

UGAUGUganda

UKRUAUkraine

AREAEUnited Arab Emirates

GBRGBUnited Kingdom

214Big Data Quality SDK 12.0 Big Data Quality SDK Guide

ISO Country Codes and Module Support

ISO 3116-1 Alpha-3ISO 3116-1 Alpha-2ISO Country Name

USAUSUnited States

UMIUMUnited States Minor Outlying Islands

URYUYUruguay

UZBUZUzbekistan

VUTVUVanuatu

VENVEVenezuela, Bolivarian Republic Of

VNMVNViet Nam

VGBVGVirgin Islands, British

VIRVIVirgin Islands, U.S.

WLFWFWallis and Futuna

ESHEHWestern Sahara

YEMYEYemen

ZMBZMZambia

ZWEZWZimbabwe

215Big Data Quality SDK 12.0 Big Data Quality SDK Guide

ISO Country Codes and Module Support

Notices

© 2017 Pitney Bowes Software Inc. All rights reserved. MapInfo and Group 1 Software are trademarks
of Pitney Bowes Software Inc. All other marks and trademarks are property of their respective
holders.

USPS® Notices

Pitney Bowes Inc. holds a non-exclusive license to publish and sell ZIP + 4® databases on optical
and magnetic media. The following trademarks are owned by the United States Postal Service:
CASS, CASS Certified, DPV, eLOT, FASTforward, First-Class Mail, Intelligent Mail, LACSLink,
NCOALink, PAVE, PLANET Code, Postal Service, POSTNET, Post Office, RDI, SuiteLink , United
States Postal Service, Standard Mail, United States Post Office, USPS, ZIP Code, and ZIP + 4.
This list is not exhaustive of the trademarks belonging to the Postal Service.

Pitney Bowes Inc. is a non-exclusive licensee of USPS® for NCOALink® processing.

Prices for Pitney Bowes Software's products, options, and services are not established, controlled,
or approved by USPS® or United States Government. When utilizing RDI™ data to determine
parcel-shipping costs, the business decision on which parcel delivery company to use is not made
by the USPS® or United States Government.

Data Provider and Related Notices

Data Products contained on this media and used within Pitney Bowes Software applications are
protected by various trademarks and by one or more of the following copyrights:
© Copyright United States Postal Service. All rights reserved.
© 2014 TomTom. All rights reserved. TomTom and the TomTom logo are registered trademarks of
TomTom N.V.
© 2016 HERE

Fuente: INEGI (Instituto Nacional de Estadística y Geografía)

Based upon electronic data © National Land Survey Sweden.
© Copyright United States Census Bureau
© Copyright Nova Marketing Group, Inc.

Portions of this program are © Copyright 1993-2007 by Nova Marketing Group Inc. All Rights
Reserved
© Copyright Second Decimal, LLC
© Copyright Canada Post Corporation

This CD-ROM contains data from a compilation in which Canada Post Corporation is the copyright
owner.
© 2007 Claritas, Inc.

The Geocode Address World data set contains data licensed from the GeoNames Project
(www.geonames.org) provided under the Creative Commons Attribution License ("Attribution

217Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Copyright

http://www.geonames.org

License") located at http://creativecommons.org/licenses/by/3.0/legalcode. Your use of the
GeoNames data (described in the Spectrum™ Technology Platform User Manual) is governed by
the terms of the Attribution License, and any conflict between your agreement with Pitney Bowes
Software, Inc. and the Attribution License will be resolved in favor of the Attribution License solely
as it relates to your use of the GeoNames data.

218Big Data Quality SDK 12.0 Big Data Quality SDK Guide

Copyright

http://creativecommons.org/licenses/by/3.0/legalcode

3001 Summer Street

Stamford CT 06926-0700

USA

www.pitneybowes.com

© 2017 Pitney Bowes Software Inc.

All rights reserved

	Table of Contents
	Getting Started
	Introduction
	Reporting

	Workflow
	Who should use the SDK?

	Installation
	System Requirements
	Required Operating System Updates
	Installing the SDK
	Overview
	Installer Inclusions
	Installing SDK on Windows
	Installing SDK on Linux
	Running Acushare Service

	Reference Data
	Reference Data Overview
	Using Reference Data: Data Normalization Module and Universal Name Module
	Using Reference Data: Universal Addressing Module

	Modules
	Advanced Matching Module
	Supported Jobs
	Match Key Generator
	Interflow Match
	Intraflow Match
	Transactional Match
	Best of Breed
	Duplicate Synchronization
	Filter

	Data Normalization Module
	Supported Jobs
	Table Lookup
	Advanced Transformer

	Universal Addressing Module
	Supported Jobs
	Validate Address
	CASS Certified Processing
	CASS 3553 Report
	CASS Detailed Report
	Validate Address Summary Report

	Validate Address Global
	Reporting Counters

	Validate Address Loqate
	Reporting Counters

	Universal Name Module
	Supported Jobs
	Open Name Parser
	Reporting

	The Java API
	Introduction
	Components of the SDK Java API
	Using the SDK
	Using Configuration Property Files
	Creating a Java Application

	Common API Entities
	ConjoinedRule
	ConsolidationCondition
	ConsolidationRule
	ConsolidationAction

	FilePath
	JobConfig<T extends ProcessType>
	MRJobConfig
	SparkJobConfig

	JobDetail<T extends ProcessType>
	JobFactory
	JobPath
	OrcFilePath
	ProcessType
	MRProcessType
	SparkProcessType

	ReferenceDataPath
	ReportManager
	SimpleRule
	Exceptions
	JobException

	Advanced Matching Module Jobs
	Common Module API
	AdvanceMatchDetail<T extends ProcessType>
	AdvanceMatchFactory
	GroupbyOption<T extends ProcessType>
	GroupbyMROption
	GroupbySparkOption

	MatchKeySettings
	MatchRule
	ChildMatchRule
	ParentMatchRule

	Special Scenarios
	Match Key Generator
	Overview
	API Entities
	MatchKeyGeneratorDetail

	Input Parameters
	Output Columns
	Using a Match Key Generator MapReduce Job
	Using a Match Key Generator Spark Job

	Interflow Match
	Overview
	API Entities
	InterMatchDetail
	InterMatchComparisonOption

	Input Parameters
	Output Columns
	Using an Interflow Match MapReduce Job
	Using an Interflow Match Spark Job

	Intraflow Match
	Overview
	API Entities
	IntraMatchDetail

	Input Parameters
	Output Columns
	Using an Intraflow Match MapReduce Job
	Using an Intraflow Match Spark Job

	Transactional Match
	Overview
	API Entities
	TransactionalMatchDetail

	Input Parameters
	Output Columns
	Using a Transactional Match MapReduce Job
	Using a Transactional Match Spark Job

	Best of Breed
	Overview
	API Entities
	BestOfBreedConfiguration
	BestofBreedDetail

	Input Parameters
	Output Columns
	Using a Best of Breed MapReduce Job
	Using a Best of Breed Spark Job

	Duplicate Synchronization
	Overview
	API Entities
	DuplicateSynchronizationConfiguration
	DuplicateSyncDetail

	Input Parameters
	Output Columns
	Using a Duplicate Synchronization MapReduce Job
	Using a Duplicate Synchronization Spark Job

	Filter
	Overview
	API Entities
	FilterConfiguration
	FilterDetail

	Input Parameters
	Output Columns
	Using a Filter MapReduce Job
	Using a Filter Spark Job

	Data Normalization Module Jobs
	Common Module API
	DataNormalizationDetail<T extends ProcessType>
	DataNormalizationFactory

	Table Lookup
	Overview
	API Entities
	AbstractTableLookupRule
	Categorize
	Identify
	Standardize
	TableLookupDetail
	TableLookupConfiguration

	Input Parameters
	Output Columns
	Using a Table Lookup MapReduce Job
	Using a Table Lookup Spark Job

	Advanced Transformer
	Overview
	API Entities
	AbstractAdvancedTransformerRules
	AdvancedTransformerDetail
	AdvancedTransformerConfiguration
	RegularExpressionExtraction
	RegularExpressionGroupItem
	TableDataExtraction

	Input Parameters
	Output Columns
	Using an Advanced Transformer MapReduce Job
	Using an Advanced Transformer Spark Job

	Universal Addressing Module Jobs
	Common Module API
	UniversalAddressingDetail<T extends ProcessType>
	UniversalAddressingFactory

	Validate Address
	API Entities
	UAMAddressingDetail<T extends ProcessType>
	UniversalAddressEngineConfiguration
	UAMAddressingFactory
	UniversalAddressGeneralConfiguration
	UniversalAddressValidateInputConfiguration

	Input Parameters
	Output Columns
	Using a Validate Address MapReduce Job
	Using a Validate Address Spark Job

	Validate Address Global
	API Entities
	GlobalAddressingDetail<T extends ProcessType>
	GlobalAddressingEngineConfiguration
	GlobalAddressingFactory
	GlobalAddressingGeneralConfiguration
	GlobalAddressingInputConfiguration

	Input Parameters
	Output Columns
	Using a Validate Address Global MapReduce Job
	Using a Validate Address Global Spark Job

	Validate Address Loqate
	API Entities
	LoqateAddressingDetail<T extends ProcessType>
	LoqateAddressingEngineConfiguration
	LoqateAddressingFactory
	LoqateAddressingGeneralConfiguration
	LoqateAddressingValidateConfiguration

	Input Parameters
	Output Columns
	Using a Validate Address Loqate MapReduce Job
	Using a Validate Address Loqate Spark Job

	Universal Name Module Jobs
	Common Module API
	UniversalNameDetail<T extends ProcessType>
	UniversalNameFactory

	Open Name Parser
	API Entities
	OpenNameParserDetail
	OpenNameParserConfiguration

	Input Parameters
	Output Columns
	Using an Open Name Parser MapReduce Job
	Using an Open Name Parser Spark Job

	Hive User-Defined Functions
	Introduction
	Components of a Big Data Quality SDK Hive Function
	Using a Hive UDF

	Advanced Matching Module Functions
	Match Key Generator
	Sample Hive Script

	Interflow Match
	Sample Hive Script

	Intraflow Match
	Sample Hive Script

	Transactional Match
	Sample Hive Script

	Best of Breed
	Sample Hive Script

	Duplicate Synchronization
	Sample Hive Script

	Filter
	Sample Hive Script

	Data Normalization Module Functions
	Table Lookup
	Sample Hive Script

	Advanced Transformer
	Sample Hive Script

	Universal Addressing Module Functions
	Validate Address
	Sample Hive Script

	Validate Address Global
	Sample Hive Script

	Validate Address Loqate
	Sample Hive Script

	Universal Name Module Functions
	Open Name Parser
	Sample Hive Script

	Appendix
	Exceptions
	Exception Messages

	Enums
	Common Enumerations
	Universal Addressing Enumerations

	ISO Country Codes and Module Support
	ISO Country Codes and Module Support

